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Abstract

GridStat is a new kind of publish-subscribe data delivery service designed specifically, from the
bottom up, for delivering real-time operational data of the electric power grid. We overview the
data delivery needs of the electric power grid and analyze why neither the Internet and its existing
technologies nor existing publish-subscribe products and research meet these needs. We introduce
periodically updated variable and periodic update flow abstractions and describe how GridStat, as
periodic update flow middleware implements these abstractions with very low latency and high
availability.
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1 Introduction

The communication systems for the electric power grids in North America were developed in
response to the 1965 North-eastern US blackout. They are piecemeal combinations of largely
antiquated technology and include virtually no exploitation of advances from the last few decades
of research in distributed computing; the situation is similar in Europe [5] and elsewhere in the
world.

As a result, the visibility that grid operators have into real-time operations, their situational
awareness, is poor [13]. This has been a contributing cause of the major 2003 blackouts in the
US [30] and across the Italian-Swiss connection, as well as with virtually all major blackouts in
recent decades. This is because these limited real-time communications capabilities in turn limit
the kinds of protection and control that can be done [13, 29]. More on the problems with today’s
grid communication can be found in [13, 6].

We have designed, implemented, and experimentally evaluated a new kind of middleware frame-
work that provides the abstraction of a periodically updated variable (PUV) in order to support
better situational awareness for the electric power grid. We believe this abstraction is a very useful
building block for programmers of power application programs, many of which may not have a
background in distributed computing or even computer science.

Besides being designed to be quite simple, its implementation (described below) performs the
usual middleware tasks of supporting heterogeneous interoparability across different CPU archi-
tectures, operating system types, programming languages, and vendor implementations of the
same standard. Its implementation also shields the programmer or system integrator from having
to deal with (or, for the most part, even being aware of) the different (and necessary) Quality
of Service (QoS) mechanisms for network links or paths, security, redundant path management,
etc. A given QoS mechanism typically has many different implementations spread across a power
grid, and over a 30 year or more lifespan new and improved versions will become available.

A PUV has two parts: a source variable and multiple remote caches on hosts where power grid
applications run. Applications retrieve PUV values from their local cache which contains the latest
update of that variable that the particular cache has received. PUV caches receive updates with
a tunable, per-instance quality of service (QoS) specified by remote applications in terms of both
freshness (maximum staleness) and availability. PUVs were designed to support the emerging
needs of the electric power grid, which can exploit very low latencies for new protection and
control schemes as well as for improved situational awareness [13]. Our research shows that PUV
updating can be done with very low latency and high scalability because, unlike previous research
into distributed shared variables, their application domain requires virtually no consistency across
different variables or even across different caches of the same variable.

The PUV abstraction is implemented by the periodic update flow (PUF) abstraction, which is
the QoS-managed flow of updates into a particular PUV cache instance. PUFs are implemented
in managed publish-subscribe middleware which manages QoS in terms of maximum delivery
latency, minimum delivery rate, and minimum number of redundant and disjoint paths for each
PUF.

PUF middleware (PUF-MW), implementing PUVs and PUFS, is a further specialization of a
kind of publish-subscribe middleware called periodic push [20] in which publishers emit events
at periodic intervals. PUFs specialize the periodic push paradigm by exploiting the semantics of
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a series of PUV updates. Specifically, in other publish-subscribe systems, an arbitrary event in
the system cannot, in general, be dropped en route because it cannot be ascertained how this
may affect the subscribing applications. However, because a PUF represents the QoS needed
for a given subscription, some updates can be dropped en route so long as QoS requirements
of downstream subscribers are met. We call this rate filtering, and it directly enables PUFs to
efficiently provide different freshness guarantees to different caches of a PUV while enhancing
multicast efficiency (avoiding unnecessary traffic). The design of these rate filtering mechanisms
(described below in Section 4) is designed to allow forwarding decisions to be decided almost
completely at initialization of a PUV cache replica, rather than the complex expression or topic
evaluation that is virtually always the case in the research literature (simpler is not as publishable!)
and in most all commercial products [20]. Further, the PUV and PUF abstractions enable their
implementations in PUF-MW to achieve very low latencies and very high throughputs. This is
achievable because power applications make virtually no assumptions about the data delivery
infrastructure’s consistency, reliability, and ordering; this is described further in Section 2.1.

PUVs and PUFs are novel. The work most closely related to PUVs is PASS [34]. However, PASS
only implemented Boolean variables, did not have per-subscriber QoS, and was not optimized for
low latency and high bandwidth (indeed, it was designed to enable practical up/down tracking —
i.e., without ping storms — of hundreds of nodes across a low-bandwidth (56Kb or less) military
network that may be subject to degratation by hostile forces). We are aware of no periodic
push middleware that captures the semantics of PUFs, specifically rate filtering, which we believe
is required to provide per-replica QoS to PUVs. The closest publish-subscribe middleware to
PUFs is that tailored for wireless sensor networks (WSNs). However, the detailed paradigms,
delivery mechanisms, overall design goals (e.g., conserving energy) and environment for WSNs
are quite different from the high-speed requirements of the electric power grid and the much
richer computational resources that can support them. Mechanisms developed for WSNs thus are
not generally appropriate for low latency, high throughput PUFs.

GridStat is a managed middleware framework we have been developing, in close collaboration
with electric power researchers, in order to meet the emerging and future needs for data delivery
services in electric power grids [2, 4, 9, 3, 13, 29]. Indeed, PUVs and PUFs were conceived from
bottom up analysis combining a detailed evaluation of the needs of the power grid identifying
opportunities to leverage advances in a number of distributed computing areas.

The research contributions of this paper are:

• An analysis of the ways in which the electric power grid’s emerging information infrastructure
differs from the general Internet at large; and why this suggests the need for new data
delivery services and protocols that exploit these differences.

• A new kind of distributed shared memory abstraction, PUVs, derived from this analysis of
electric power grids’ needs.

• PUF-MW, a new kind of periodic push publish-subscribe middleware that enables the im-
plementation of PUVs in a fast and scalable way. PUVs and PUFs, when combined with
the more controllable and predictable nature of power grid communication needs, enable a
number of optimizations which are not otherwise possible.
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• An overview of the design, architecture, and performance of GridStat, an implementation
of PUF-MW.

The remainder of this paper is organized as follows. Section 2 provides more context in the
form of power grid data communication requirements. It then introduces and defines PUVs and
PUFs, as well as a publish-subscribe system model that supports them. Section 3 contrasts
the emerging data delivery infrastructure for the electric power grid with the general-purpose
Internet. It shows how the emerging data delivery network for the electric power grid must be
more stable and managed than the Internet at large, and how these properties can be exploited by
new mechanisms. Section 4 provides an overview of our GridStat middleware: its design decisions
enabled by the more controlled and resource rich environment; its performance and scalability;
and advanced mechanisms enabled by the semantics of PUVs and PUFs. Section 5 overviews
related work and section 6 concludes.

2 Context of Power Grid Data Communication

In order to provide a data delivery service tailored to the needs of the electric power grid all
requirements that the data is subject to must be specified. This section lists QoS and flexibility
requirements for these data flows and then describes a system model that realizes them.

2.1 Data Delivery Requirements for the Electric Power Grid

We now overview the requirements for data delivery in the electric power grid, for today’s
applications and for future applications envisioned by electric power researchers, recent IEEE
standards, etc. For the sake of brevity, we omit most references to such electric power sources—
they can be found in [6]. The requirements outlined below do not include cyber-security and trust
management issues; for an overview of them, see [6] and the sources it cites.1

Flexibility requirements for data delivery include:

• Efficient multicast: a given publication must be deliverable to multiple subscribers in
different locations in an efficient manner: a given update in the flow should not be sent over
any given network link more than once.

• Heterogeneity of delivery QoS: for reasons of network efficiency and stability, different
subscriptions (i.e., subscribers to the same update flow) must be able to specify different QoS
requirements. Supporting such heterogeneity is possible only because a PUF is not forward-
ing arbitrary events but is rather forwarding updates whose downstream QoS requirements
(latency, rate, availability/redundancy) are known.

Synchronization requirements for data delivery are only:

• Temporal synchronism: one fairly new kind of sensor in the power grid, called a syn-
chrophasor, requires temporally synchronized QoS management. This is explained further
in context in the discussion of “synchronization between flows” in section 3.4.

1We note that the analysis in [6] served as the basis for many of the requirements for a recent Dept. of Energy
solicitation to create a detailed requirements specification for a grid-wide data delivery service called NASPInet
[26]; work on this solicitation has recently begun [27].
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Note that there are no requirements for consistency (other than temporal synchronsm) from the
distributed computing literature, or different ordering strengths (i.e., total, causal, etc.) from the
fault-tolerant computing literature. This is because today’s data delivery infrastructure for the
grid is very crude (compared to the state of the art in distributed computing) — not only is the
crude SCADA widely used, but the utilities and most (likely all) vendors who do data delivery over
more modern networking infrastructures have no QoS-managed middleware such as PUF-MW,
but rather hard-code data delivery using the transport layer in their power applications (and, in
some instances we are aware of, using Visual BASIC). As a result of the above, power programmers
make no assumptions about consistency, ordering, and reliability of teh data delivery. They also
know that today’s state estimation software that they delivery data to already have to tolerate
value erros and omissions in the data.

QoS requirements for data delivery include:

• Delivery latency: 4 msec end-to-end for some flows within substations, and 8–12 msec
for flows external to substations, with greater latencies, up to several seconds, allowed for
other flows[6]. Emerging wide-area protection schemes can utilize low latencies (which of
course include link latencies that are limited by the speed of light) to perform protective
actions across hundreds of miles or more in one or two power cycles (i.e., approximately 16–
32 msec in the United States and 20–40 msec in Europe). It is thus imperative to keep the
latency added by the PUF-MW to less than 1 msec over the delays inherent in the underlying
network infrastructure (typically fiber), including any rate filtering and multicast forwarding
logic at the multiple hops in the data delivery path. If it gets significantly higher than this,
then new kids of emerging protection schemes will be impractical across their desired or
required geographic scopei[14].

• Delivery rate: Must support as high as 60 updates per second (Hz) and as low as once per
30 days. In the future, 250 or more Hz will be required. (We note that today no more than
30 Hz is used in practice, because that is all the simple data delivery services will support
(even over fiber) and at no more than 75 locationsThis is because the transport-level data
delivery infrastructure cannot scale past that rate and size, because most requirements in
this section are not supported. However, power engineers wish to have a higher rate than
this, at least twice the power frequency and even four or more times it. Also, many power
engineers hope to have the data thousands of synchrophasors (described below) deployed
across a power grid and shared between many utilities and the coordinating levels above
them. This number does not count other synchrophasors used within a substation or at a
scope within a single utility that are used to detect power faults [32].

• Data availability: must support as high as “Ultra” availability (99.9999%) to “Medium”
availability (99.0%), depending on the power application program. 2

2.2 Periodically Updated Variables

The PUV abstraction allows the value of a sensor to be distributed to different power appli-
cations that are widely dispersed across an electric power grid. A given sensor emits updates at

2We do not necessarily believe that six 9s are achievable, but it has been specified for data availibility by a
major power research institution, and is probably not a bad ballpark to try to achieve for the most critical data.
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a known minimum rate, min rate, where the units are updates/second. Each subscriber to the
variable specifies a freshness, in seconds (typically a small fraction of a second), which indicates
how long the application can wait for an update. The maximum period for the sensor, max period,
is of course defined as the inverse of the min rate. Assuming that an update can be delivered with
a maximum latency, max latency then:

Freshness = max period + max latency (1)

This freshness, as well as availability, is specified on the granularity of a cache instance; i.e.,
different subscribing applications can be given different values of freshness and availability. The
mechanisms for meeting both latency and availability requirements are discussed below.

A PUV’s value can be either a typical basic type or a compound type. As mentioned above,
a PUV has a single publisher, so consistency is simpler to provide than in distributed shared
systems that can have multiple writers.

Such a single publisher is, of course, a single point of failure. However, extending these ideas
to replicated sensors providing fault tolerance adds very little complexity and overhead to the
data delivery infrastructure, even though the different sensors would provide slightly different
measurements. This is because power applications are quite forgiving in this regard: they do not
require ultra-precise data, and for example different state estimators in different utilities (or even
a backup state estimator for the same utility) will not have identical inputs given at identical
times. Thus, in our investigation (including detailed discussions with power researchers), these
applications can quite easily tolerate for example if different cache replicas of the same PUV were
to be given slightly different values (for example, 10−5 or even more). Also, in practice, this voting
would happen fairly close to the sensors, so the overall cost of the replicated sensors would very
very low, possibly negligible.

2.3 System Model

The system model to support PUVs with real-time updates across a wide-area network is
illustrated in Figure 1. The data delivery system is separated into two distinct parts:

• The data delivery plane, which delivers real-time operational data, and

• The management plane, which accepts or rejects requests for data (subscriptions) based on
security and performance constraints. It also calculates the paths by which the data will be
delivered from a publisher to its subscribers.

A publisher is a piece of software attached to a sensor or other source of operational data. It
registers one or more PUVs with the data management plane (described below) and indicates the
minimum update rate for each. (This is often hard-coded in the power grid, in sensors’ hardware
or firmware.) The publisher then begins to emit updates for each PUV variable. The updates for
a given variable are delivered by the data delivery plane to one or more subscribers. A subscriber
registers interest in a PUV and indicates its required freshness and availability (more on the
availability below).

In Figure 1, publishers and subscribers are shown for clarity’s sake on different sides of the
data delivery plane; in practice, of course, they would be dispersed throughout. Additionally, we
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note that an update in a PUF is called an event in the more general publish-subscribe paradigm.
We use this term specifically because updates to a given variable can be managed much more
efficiently and quickly than a generic event in a publish-subscribe system.

The data delivery plane depicted in Figure 1 is also called the NASPInet Data Bus in an ongoing
electric power effort [27]. As is true in virtually all publish-subscribe systems, the data delivery
plane is subdivided into a graph of forwarding elements (FEs) that pass on an update to one or
more outgoing links as dictated by the QoS requirements of the subscriptions. FEs are connected
by links that provide a given amount of bandwidth as well as (stochastic or deterministic) bounds
for minimum delay and drop rate. These links may be implemented directly on top of fiber or
ATM, across a managed utility infrastructure using internet protocols and other off-the-shelf
technology; in practice, virtually all traffic will in our opinion over IP for the next decade.

Finally, publishers and subscribers are also connected to one or more FEs, though typically
over a local area network connection with very good link properties.

Figure 1 depicts N publishers denoted Pub1 through PubN . In this example, Pub1 is the
application that “owns” and updates the variable X in its programming language. The publisher
turns the local variable X into PUV X, with the publisher at the root of its update tree and the
cache instances of the PUV at its leaves. These cache instances reside in the subscribers, denoted
Sub1 through SubM . Note that these multicast “trees” are really multi-trees, having multiple
disjoint paths from each PUV publisher to each cache replica at its leaves. In the example, PUVs
X and Y are updated by Pub1 while Z is updated by PubN . Y is of course subscribed to by
both Sub1 and SubM , illustrating the multicast nature of PUVs. (The redundant paths are not
depicted for the sake of clarity.)

The management plane exerts control over the data delivery plane to ensure that QoS require-
ments for all PUVs are met. As part of this task, it performs admission control: it takes in the QoS
requirements for each subscription and creates multicast paths through the FEs to meet those
requirements [15]. Subscriptions are created only if there are sufficient resources. All updates
enter the PUV via a proxy object on the publisher side. The proxy performs traffic policing to
ensure that the update rate the publisher registered (and the management plane accounted for)
is not violated [25]. Additionally, an FE can discard packets not signed by a proxy so an intruder
that gains physical access can only affect FEs to which it is directly connected. This offers some
protection against denial of service attacks.

2.4 Periodic Update Flows

PUFs capture the semantics of a flow of updates to different cache instances of a PUV. PUF-
MW is a managed middleware framework that implements multiple PUFs, i.e., delivers updates
to multiple PUVs, while meeting the QoS requirements for the PUVs it is supporting. PUF-MW
thus comprises both the data delivery plane and the management plane from figure 1.

PUFs have much simpler semantics than general publish-subscribe systems in two key ways.
First, th ere is no complex subscription matching: a subscriber simply asks for a (heirarchically-
named) variab le that is hierarchically named (described further in Section 4. Second, the FEs
along the update path for a given PUF do not store anything. Outgoing paths for each update are
chosen usi ng a simple computation. These factors enable PUF-MW to support much lower latency
and much higher t hroughput (updates/second forwarded) than is possible with less specialized
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Figure 1. Power Grid Data Delivery System Architecture

publish-subscribe middlew are, as we describe in section 5.
In section 4 below we describe GridStat, our implementation of PUF-MW. First, however,

additional details on the networking and application infrastructure of the electric power grid,
provide context for the design decisions made in the GridStat PUF-MW.

3 Comparison of Electric Power Information Networks to the Internet

We now compare the networking infrastructure provided by the Internet with the present and
emerging information network infrastructure of the electric power grid—electric power information
networks or EPInets. The obvious question is why not just use the Internet (or at least the
Internet’s common protocols such as TCP and UDP) to implement power system monitoring and
control applications? Answering this question requires understanding major differences in the
operating context and required characteristics of the Internet and an EPInet. Distinctions can be
drawn in four major areas: static properties, operational practices, performance characteristics
and load characteristics. These distinctions are summarized Table 1; we now describe each row
in that table.

3.1 Static properties

Static properties that distinguish EPInets from the Internet include overall network size and
universal connectivity. The Internet is nearing a billion hosts and it forwards, on demand, data
from any one of them to any other. In contrast, EPInets will support several orders of magnitude
fewer hosts.3

3The power grid in the eastern portion of the USA and Canada, for example, has 9270 busses in it [12, p.
257], and in the entire US there are 3500 companies that participate in the grid in one form or another (mostly
utilities or higher-level coordinating entities; most of the utilities are fairly small in geographic scope) [30]. Thus,
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An EPInet’s purpose is not universal data delivery to any arbitrary host in the world at any
time with no prior establishment of security and resource permissions. Rather, it is high quality
delivery to a known set of customers for a known (but slowly changing) set of applications.

3.2 Operational practices

Operational practices that separate the two kinds of networks include admission control and
the frequency and control of topology changes.

Because the Internet is designed to serve all comers, at the equipment level new end hosts can
be freely added. At the packet level IP backbones are expected to provide (at least) best-effort
delivery for every packet that is presented to them. EPInets have admission control perimenters
across which both addition of new equipment and acceptance of packet traffic are controlled, based
on prior granting of specific resource permissions. Traffic policing (against innocuous overload
traffice caused by programmer error or jabbering network hardware and also against malicious
denial of service (DOS) attacks) is of course an essential prerequisite to providing real-time service.

The Internet consists of networks under the independent control of many organizations that
operate their networks without much inter-organizational coordination. One major consequence
is that the Internet’s topology changes relatively frequently. Routers in the Internet can have
their configurations changed by system administrators at any time, without warning to others on
the net, leading to changes in paths taken by data. Another consequence is that no single location
knows more than a tiny fraction of the network topology. Since knowledge of network topology
is incomplete at every router, routing calculations in practice have to be done in a distributed
fashion.Thus, there is no notion of a path per se: each packet just gets forwarded towards its
destination at each router according to that router’s current knowledge of the topology. Because
of this, Internet routing algorithms are subject to short-term instability when links or routers fail
or are reconfigured. This is unacceptable for an EPInet.

In an EPInet, topology changes will be coordinated ahead of time to ensure that QoS require-
ments of applications continue to be met. Furthermore, given the scale outlined above, it is feasible
for a single location to have complete knowledge of all forwarding engines and their connections.
For an EPInet, explicit paths are necessary in order to be able to guarantee predictable latency
and availability, but paths do not have to be computed frequently because new sources of data
(sensors in the grid) and the power applications that consume them are added on a long timescale
(months and years). Also, since an EPInet changes much less frequently than the Internet, these
paths do not have to be calculated dynamically at data delivery time (forwarding time), but can
be computed offline when a subscription is requested. This suggests that relatively static routing
algorithms are acceptable, providing that there are multiple disjoint paths set up from the start.
The flip side is that the Internet is very robust, given the level of QoS that it provides, in the face of
both intended and inadvertent changes. Care must be taken in an EPInet to ensure robustness at
the promised level of QoS in the face of infrequent, but still expected, unplanned changes (due, for
example to operational mistakes, accidents, and natural disasters). Accountability requirements
for electric power operations also require that all configuration changes be logged.

we believe that a very reasonable upper bound estimate on the number of future hosts in EPInet is 105, requiring
103 to 104 FEs.
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3.3 Service and performance characteristics

EPInets, in order to meet their goals, are required to predictably deliver performance levels
that are almost never observed in the Internet. Predictable (very fast) performance, of course,
implies that some fault tolerance mechanisms must be combined with (very fast) data delivery
mechanisms. That is, the fault-tolerance mechanisms must not impact the required (very low)
latencies.

We believe that the keys to accomplishing this are twofold. First, don’t over-design the data
delivery mechanisms wtih unnecessary consistency, oredering, or post-drop error recovery (de-
scribed further below). Second, move all of the logic for path allocation, and as much of the
logic as possible for rate filtering and mulicast forwarding, from data delivery time back to session
(subscription) setup time. These principles have been adopted in our PUF-MW, GridStat, as
described below in Section 4.

The delivery latency achievable over the wide area in the Internet ranges from, at best a few
milliseconds to hundreds of milliseconds, depending on a number of factors including congestion,
and the length and bandwidth of the delivery path for each packet.

EPInet applications operate physical processes that must be monitored and controlled in real
time. Lack of admission control in the Internet means that the level of predictability achievable
cannot be good enough for these applications. EPInets limit their traffic load using admission
control at the edges and internal instrumentation to monitor the networks’ health. These are
only the first necessary steps toward achieving guaranteed latency. EPInets must take advantage
of their admission control boundaries by having mechanisms that can decide whether or not
additional load can be served and also by having mechanisms to prioritize PUFs to ensure that
each one’s QoS requirements are met. This must of course be achievable in the face of one or
more IT contingencies such as a node failure or DOS attack.

Packet loss is another obstacle to delivering the service required of EPInets. Admission control
removes one source of packet loss, congestion, but sources such as bit errors and physical damage
to links remain. Internet transports that provide reliable data delivery, principally TCP, rely on
acknowledgements (to detect drops) and retransmissions (to repair them). However, this cannot
provide predictable latency: when a packet is dropped, a latency deadline will almost certainly be
missed. Therefore, in an EPInet post-drop error recovery cannot be used.Rather, multiple disjoint
paths are used for each PUF to proactively tolerate message drops [15]. In this scheme, multiple
copies of all updates are automatically sent by EPInet’s transport service, one per disjoint path.
Paths are established to ensure that the latency along each path meets the latency requirement
of the PUF. Thus, if a packet is dropped on one path a different copy of it will arrive along one
of the other paths by the deadline.

Recently proposed transport protocol designs for the Internet, such as SCTP [24] and DCCP
[19] attempt to address some of the shortcomings of the Internet’s main transport protocols,
TCP and UDP. SCTP allows independently ordered message streams to be carried on a reliable
connection and it allows multi-homed hosts to gain improved availability by associating multiple
host interfaces with each connection. SCTP does not support multicast and though more flexible
than TCP in this regard, it nevertheless works too hard to recover from missing messages whose
delivery no longer matters to real-time applications.

DCCP is designed to make datagram traffic a better network citizen by making datagram flows

10



sensitive to network congestion. Although DCCP may ultimately have a role to play for non-real-
time traffic in an EPInet, real-time traffic requires reserved bandwidth and congestion avoidance
rather than congestion detection [28].

3.4 Load characteristics

The final way in which EPInets differ from the Internet is in the characteristics of the loads
they are designed to carry. EPInets need to be flexible in order to meet the evolving needs of the
power industry but the traffic they carry is much more contrained and predictable than is found
on the Internet. This enables design choices that in turn allow EPInets to meet QoS requirements
that are beyond reach in the Internet.

• Basic forwarded data unit: On the Internet, the unit of information that is forwarded
by a router is an uninterpreted packet, which can be used for a wide variety of purposes (by
design).

Of course, because it is uninterpreted, a given application-level variable may be split over
multiple packets, and the mechanisms at the network (IP) layer have no way of preventing
this. Not only could the second packet arrive later, but fragmentation and reassembly adds
to the delivery latency.

In an EPInet, the unit of information that is forwarded is a single update of a PUV. This
enables an EPInet data delivery service to exploit the semantics of periodic update flows,
for example, in rate filtering mechanisms.

• Traffic predictability: The traffic on the Internet exhibits high short-term variability at
the network and transport layers. The variability of Internet traffic means it is possible
to achieve good performance, on average, at low cost. However, the variability also works
against delivery of guaranteed good performance to specific flows. Indeed, the way both
the Internet was designed as well as how today’s commercial networking products are built
preclude such predictably ultra-low latency and very high scalability.

The traffic of an EPInet varies much less, both in the steady state and during many domain
(i.e. power) anomalies. The set of application programs monitoring and controlling a critical
infrastructure such as the electric power grid changes very slowly, on the time scale of
months or even years. Each application has specific data requirements that change only in
response to changes in the underlying power grid. We note that the need for a new variable
subscription (or even changes in QoS parameters of an existing variable subscription) will
almost always come from a detailed engineering study. That is, to make an understatement,
power operators in control centers do not choose thousands of arbitrary new variables not
part of some prior contingency study to track in an emerging power contingency!

Further, power grid operators have to explicitly plan for handling any single failure (contin-
gency), for example, of a generating unit or transmission line. Contingency planning occurs
far ahead of occurrences so any additional sensor data needed for responding to a contin-
gency can also be planned. Because forwarding in an EPInet’s FEs is a simple calculation,
their forwarding tables are fairly simple. Also, due in part to the temporal redundancy
inherent in PUFs, their routing tables can be switched very quickly to adapt to changing
information needs, such as those engendered by power contingencies or cyberattacks [1].
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Not all of the traffic carried by an EPInet will be PUFs. Control traffic and other less-
predictable traffic, such as alarms and alerts, will also be carried. These will, however,
constitute a small fraction of the total traffic. The bandwidth isolation techniques used
to provide guaranteed latency for PUF traffic [21] can also provide guarantees for control
traffic while keeping non-real-time traffic from interfering. Techniques for handling aperiodic
events such as those described in [33] can also be applied.

• Elasticity of QoS requirements: In the internet, few applications are designed to throttle
back the traffic they impose on the data delivery system [35]. Further, we believe that most
application domain experts have never even considered how they might be able to throttle
back their traffic under different circumstances (notable exceptions here being multimedia
streaming applications). In an EPInet data delivery service, we can capture the required
delivery rates for each subscriber and thereby exploit the semantics of periodic update flows.

• Multicast: Multicast in the Internet is the unusual case. Multicast in an EPInet is the
usual case—monitoring traffic is inherently of interest at multiple locations—and different
applications require different latency and reliability guarantees.

• Synchronization between flows: Recently, power grid sensors called synchrophasors
(also called phasor measurement units, PMUs) have GPS-accurate clocks and produce 30–
250 updates per second. Synchrophasors are a crucial emerging technology for the grid
[22, 27] as they give operators more accurate understanding of the grid’s operating status
than today’s state estimators do. Synchrophasors also introduce possibilities for automatic
control that are not feasible today. When performing rate filtering on synchophasor PUVs,
care must be taken to preserve the precise global snapshot provided by a set of synchronized
updates from multiple PMUs.

Since one potential use of the status dissemination network is to support applications us-
ing synchronous phasor measurements there is a subtlety in rate filtering for synchronous
phasor measurements: a large part of their benefit comes from the fact that, being taken
simultaneously throughout the power grid, they can be compared to compute, for example,
voltage angles. Rate filtering is necessary for PMU data because these devices can produce
1–4 readings per power cycle, yet data can only be reasonably used (at least today) at one
or two orders of magnitude lower rate. Without rate filtering, many status updates from
PMUs (and other sources) would be wasting significant bandwidth. It would be most un-
fortunate, however, if the rate filtering were to filter update streams from different sources
differently-delivering, say, 4 updates per second from one stream timestamped at 0, 250,
500, and 750ms past the second while delivering updates from another stream timestamped
at 125, 375, 725, and 875ms past the second. This of course would not provide a consis-
tent global snapshot of the grid’s conditions. GridStat’s rate filtering is designed so that
subscriptions with identical rate requirements for a given PUV with compatible publication
intervals result in identical timestamps on the delivered updates for all subscriptions. We
note that this can be implemented very efficiently, as described below in Section 4. For more
information, see [6, 11, 17].

In the Internet at large, with TCP, there is no synchronization between different TCP
flows, though a few experimental protocols do synchronize between audio and video from
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a common source. Most data flows in EPInet are independent, and there are nothing like
causal or total ordering constraints familiar to distributed computing researchers. However,
when rate filtering is used on some kinds of data, it does need to be synchronized.

The comparisons of this section are succinctly summarized in Table 1. The basic IP protocol is
a useful foundation on which to build an EPInet but differences in scale, use, and requirements
mean that different design choices can and must be made regarding operations, routing, transport
protocols, and error recovery.

4 Overview of GridStat

GridStat is our implementation of PUF-MW and the architecture of Figure 1.
The Data plane The management plane in Figure 1 is implemented in GridStat as a hierarchy

of managers called QoS Brokers. This maps naturally onto the hierarchy of electric power grids
everywhere, and also allows for local control over resources (for reasons quite similar to that of the
Internet’s Domain Name System). A name in GridStat is a fully qualified path from the root to
a leaf in the QoS Broker hierarchy. It is mapped onto a PUV identifier (PUV-ID) that is globally
unique. Finally, directory entries are stored in leaf QoS brokers only. For more details on naming
in GridStat, see [16].

GridStat’s data plane is comprised of a graph of FEs that are described further below. It is
important to note that it is the FEs that offer the fast delivery, the hierarchy of QoS Brokers not
involved at data delivery time, only at subscription setup time and when higher-level adaptations
are needed.

A more detailed mapping of the components in GridStat is as follows:

• A FE from Figure 1 is called a status router (SR) in GridStat. The word “router” is used
deliberately: a SR indeed routes messages along its way. However, due to an EPInet’s more
controlled and stable environment, described in section 3, static routing is employed which
enables very low latencies to be achieved. GridStat’s management plane can quickly change
routes to adapt to failures (i.e., based on internal instrumentation) or cyber-attacks (e.g.,
based on intrusion detection systems). In practice, such changes will be needed many orders
of magnitude less frequently than an IP router changes its routing table.

It is crucial to note that the SR performs tasks such as per-subscriber rate filtering on an
individual PUF basis, something that cannot be done at the IP or even the transport layer.
Rather, such actions have to be performed at the middleware layer because they need to
utilize knowledge of data variables involved and the data-level QoS requirements.

• GridStat’s management plane is a distributed collection of components called QoS brokers.
The management plane handles subscription requests for clients, calculating a route that
meets the subscriber’s requirements and then updating forwarding tables in the SRs. The
QoS brokers are organized hierarchically. This maps naturally onto the geographic and busi-
ness organization of the electric power grid. QoS brokers are repositories for and enforcers
of businesses’ resource and security policies related to information dissemination. The hier-
archy also enables the QoS Brokers to serve naturally as aggregators of information received
from power sensors and data plane instrumentation.
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Other key design decisions include:

• SRs perform both rate filtering and multicast. This directly enables per-cache latency and
rate guarantees while at the same time supporting efficient multicast—no update is ever
sent over the same link twice. This in turn enhances reliability and availability by reducing
the amount of network traffic required for a given set of PUFs.

• Different levels of availability are provided to subscribers by delivering updates over multiple
redundant paths, which are calculated by the management plane so that each path meets
an individual subscriber’s rate and latency requirements [15].

The precise amount of availability provided by a given PUF cannot presently be calcu-
lated in GridStat, but we believe that providing good estimates of availability is reasonably
straightforward engineering.

Multicast and rate filtering interact as follows, with most of the logic having been pushed back
to subscription setup time; what is done at data delivery time follows. Both multicast and rate
filtering are implemented by a single forwarding mechanism that works as follows. The PUV-ID
and (GPS-accurate) timestamp are extracted from each incoming packet. The ID is used as a key
to look up the outgoing links with active subscriptions for that ID. The lookup yields for each
link a list of subscription intervals. A calculation based on the interval and timestamp yields a
forward or do not forward decision for that link. If any of the subscriptions on a link produce the
decision forward then the packet is sent on the link; otherwise, it is dropped—there is currently
no need for it downstream.

4.1 Overview of GridStat Performance and Scalability

The latest GridStat status router implementation introduces latency of 24 microseconds (aver-
age, unloaded) to 2.2 milliseconds (max, heavy load) per hop. For use on low-speed lines we have
incorporated developed an implementation of the Delay Earliest Due Date scheduling algorithm
for the Linux kernel. This allows the GridStat management plane to direct the status routers to
locally prioritize update events so that they meet their end-to-end latency requirements [21].

We have also investigated GridStat event forwarding on network processors. The initial ex-
periments were conducted on Intel’s simulator for the 2003-vintage Radisys ENP2611 PCI card.
The ENP2611 integrates an Intel IXP2400 network processor chip having 8 packet processors,
4 network connections (1 at 100 Mbps, 3 at 1 Gbps), and buffer and program memory on a
PCI card that plugs into a host computer. The ENP2611 is capable of performing a simplified
GridStat routing algorithm at 1Gb/s line speeds. This corresponds to approximately 2 million
GridStat update forwards per second per output link. Measured forwarding delays range from 1–3
microseconds. These initial performance results suggest that further exploration of the network
processor path is worthwhile. Success is not certain, however, because the network processor
devices have limited abilities to implement filters in the full generality specified in the GridStat
architecture, requiring co-processor assistance that may obviate the network processor’s speed
advantage (unless a network processor is available with for example FPGA). For more details see
[6].
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5 Related Work

5.1 Overview of Publish-Subscribe Research

Much of the research literature for publish-subscribe systems deals with either the expressive
powe r of subscriptions or event correlation, or both. (For a few recent surveys, see [10, 20]).
These research systems provide far more general services than what is required for the elect ric
power grid (and supported in PUF-based PUVs). The flip side of this generality, however, is that
their latency and scalability are far from what is required by the electric power grid, or what is a
chievable by more specialized and optimized systems such as GridStat.

For example, [20] presents a comprehensive taxonomy of publish-subscribe systems. It notes
that event filters can be evaluated either at subscription time or at event propagation time. The
paper then notes that event services have traditionally evaluated event filters at propagation time.
Indeed, it does not list any systems that do filtering at subscription time, and we are not aware of
any. However, subscription-time evaluation not only avoids slowing down event propagation like
propagation-time evaluation does, but as [20] notes “it may assess the availability of resources,
authenticate a connection, or process admission control”. This is precisely what PUF-based PUVs
enable.

5.2 PUF-MW Related Research

Table 2 summarizes research and deployed software that is related to PUF-MW. None of these
are, in our opinion, closely related to GridStat in most or all key areas: for example, none meet the
NASPInet requirements outlined in section 2.1; none are designed to provide u ltra-low delivery
latency; and none directly allow different subscribers to a PUV to be provided a di fferent level
of QoS.

Table 2 has three sets of rows: first for commercially available or open source middleware; second
for PUFs and the most closely related work to them; and third for other categories of research
systems. In this table the columns are properties that are germane to meeting the requirements
in section 2.1.

QoS Per-Subscriber: can the system provide a different level of QoS for different subscrib ers
of the same topic or variable? PUF-based middleware is the only kind we know of that supports
th is directly, though PASS and WSN-based PUF systems allow this indirectly by hand-coding
forwarding en gines. These hand-coded variants of per-subscriber QoS are a burden for non-expert
programmers. They also cannot provide hard real-time guarantees or ultra-low latencies, and are
rather intended to hel p minimize battery usage (in WSNs) or use of scarce wide-area network
bandwidth in military operation s (PASS).

Permanence: what does a forwarding element do if an update cannot be delivered to the next
destination in its delivery path (with the final hop of course being a subscriber)? With transient
communication, the event is dropped if an event or update cannot immediately be forwarded
to the next destination. With persistent communication, a message is stored at a forwarding
element for as long is it takes to deliver it to the next hop. We note that systems that provide
persistent communicati on employ mechanisms that are unsuited for providing ultra-low latency
and providing real-time perfor mance.
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Abstraction: what abstraction does the framework provide the programmer, both for the
publisher and the subscriber? Most publish-subscribe systems provide an abstraction of an event
(similar to a message). Only GridStat and WSN-PUFs provide the abstraction of a data variable.

Real-Time: does the system provide hard (H) or soft (S) real-time guarantees, and across
a LAN or a WAN? (Of course, if it is provided across a WAN it also is across a LAN, and all
systems provide best-effort, even across a WAN, so this is not listed.) We note also that of course
real-time means predictable timeliness, not always ultra-fast, so even systems that provide hard
real-time behavior are not necessarily designed to provide the very low latencies required for the
power grid.

Time of Forwarding Logic: Does the logic for forwarding decisions (including expression or
topic evaluation) happen mostly at setup time or at data delivery time. Note that the latter is
more expressive and general-purpose but in practice we believe that it adds a prohibitively high
amount to delivery latency.

Redundancy: do the PUFs in the system provide spatial redundancy (multiple disjoint paths)
or do they have natu ral temporal redundancy in their flows (the next update for a given variable
is coming shortly), and are designed accordingly (e.g., post-event recovery is pointless)?

5.2.1 Commercial Systems

Many different kinds of publish-subscriber and similar middleware have been in wide use for a
number of years. None that we are aware of is intended to provide the ultra-low latencies required
by the power grid. (In fairness, they provide a much richer API, persistence, etc. that GridStat
does not strive to provide).

The Object Management Group has an emerging specification for publish-subscribe, the Data
Distribution Service (DDS) [23]. PUVs are a mix of properties in two different kinds of DDS
subscriptions, Signals and States. It has a wide range of QoS policies that seem to cover most
of the requirements given above. However, none of the vendors’ implementations that we are
aware of optimize for anything near as controlled as an EPInet or require anywhere near as
low a latency as emerging power applications do. As a result, they provide higher latency than is
required by EPInet, use post-drop error recovery, and are in other ways not fully supportive of teh
requirements described above. Finally, no DDS products that we are aware of offer per-subscriber
QoS.

Message-oriented Middleware (MOM) and the similar message queueing systems provide per-
sistence, and some provide redundant paths. More general Enterprise Service Busses (ESB) are
a kind of middleware that is avaialble from vendors such as IBM and Tibco. While superficially
similar to PUF-MW, its main differences are that it does not directly support QoS per subscriber
(as far as we are aware), and it evaluates forwarding decisions at runtime. Most implementations
also provide persistent delivery via message queues, which adds unacceptably to latency.

We note that streaming middleware such as StreamBase usually does not do its own data
delivery, but rather focuses on compelex even processing (CEP) that is intended for financial
trading with very complicated event detection that in our experience is light years beyond what
power applications are likely to need in the next few decades, and hence adds unnecessary latency.
The streaming middleware systems that do not do their own delivery typically either use a ESB
system or have their own simple mechanisms, either with the limitations below.

16



File transfer services such as Bittorrent are listed here to compare their properties; while not
publish-subscribe systems, they are sometimes confused with them in the power industry. Web
services are a vaguely defined category of software (some publish-subscribe, others client-server)
designed to make it much easier to integrate different applications, and are in widespread use
in business-to-business (B2B) domain. They usually use XML and web-based interfaces and
protocols (often http), which are not only much slower than typical middleware systems (e.g.,
with compiled stubs) but also have many security and other dependability issues [6, 8, 7]. Yet
they have been proposed for use in real-time, mission critical data delivery for the power grid.
While web services and SOAs are very useful for B2B, they are by design unsuited for real-time,
mission critical applications, as are their close cousins Service-Oriented Architectures (SOAs).

5.2.2 Flow-Based Systems with Temporal Redundancy

PASS is a CORBA based publish-subscribe framework that is very configurable [34]. It is the first
example we know of anything close to a PUV, and was one of the inspirations for the GridStat
research. There are many fundamental differences between it and GridStat, however. Its semantics
are much looser than GridStat’s(FEs, aggregation points, and other architectural elements can be
hand-coded to provide a variety of different finer-grained publish-subscribe semantics.). As such,
it was not designed to provide ultra-low latency. It is intended for a very different environment
than GridStat and that outlined in Section 2.1: wide-area military deployments with low and
unstable bandwidth. In particular, its most mature deployment was providing boolean up/down
status for a wide range of distributed applications in the field. This was to prevent pingstorms,
where each application would individually ping each key service or servier it depended on, all over
a low bandwidth line (e.g., 56 KB, which also had to transport application data) and on unstable
links over satellite. PASS has been deployed in a number of wide-area military deployments. It
also was used to delivery up/down status to adaptive applications in the Quality Objects (QuO)
middleware system [35].

PASS provides persistent delivery in that each FE stores the name/value pair it is forwarding,
then tries to contact the next hop. The subscriber API is for a large set of records, not a single
variable; [34] notes that future work included adding the ability to subscribe to an individual
record (variable).

5.2.3 Periodic Push Systems

Periodic push systems are the closest specialization to PUF-based PUVS that we have found in
terms of their delivery mechanisms residing in the forwarding engines (FEs). However, they differ
from PUF-based PUVs in that none support:

• WAN-based hard real-time (WAN-HRT) guarantees

• The PUV abstraction for subscribers

• Rate filtering

• Subscription-time event filtering

• Are intended for the very low latencies needed in the power grid and possible with PUFs.
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Two representative periodic push systems are COSMIC [18] and RT TAO’event system . COS-
MIC is intended to support factory automation applications distributed across a single LAN and
supporting low-performance hardware with a small memory footprint. It employs a novel mech-
anism for saving bandwidth by discarding event messages whose deadline has expired. This is
in contrast with GridStat, which discards update messages based on rate; specifically if no sub-
scriber downstream in the multicast tree needs this update to satisfy its rate requirements. RT
TAO supports periodic rate-based event propagation. It has many more features and flexibilities
than GridStat does, but none of the grid-specific optimiazaitons. We believe it could indirectly
provide per-subscriber QoS and delivery over multiple paths, but only by hand-coding event fil-
ters which are evaluated at delivery time and which would be a significant barrier to achieving
ultra-low level delivery latencies.

6 Conclusions and Future Work

In this paper we presented a new kind of publish-subscribe middleware, based on periodic update
flows, and the periodically updated variable paradigm that it supports. These abstractions, and
the GridStat middleware framework that implements them, are tailored for the very low latencies
and high availability required in the emerging electric power information network. They are thus
designed to be as simple as possible, while still meeting the requirements for mission-critical, wide-
area data delivery in the power grid, to avoid performance and scalability limitations imposed
by stronger levels of consistency, ordering, and reliability. PUF-MW also exploits the much more
controlled nature of EPInets, as compared to the Internet, to achieve fast, reliable delivery of
updates.

Our implementation of PUF-MW, GridStat, has a number of advanced features that are beyond
the scope of this paper. Work has been done to provide confidentiality and integrity for the data
plane, with security modules that can be replaced securely and without the risk of man-in-the-
middle attacks [25]. A two-way RPC mechanism has also been developed, with requests and replies
delivered over QoS-managed GridStat PUFs [31]. The RPC mechanism supports pre-conditions
and post-conditions over PUVs to provide additional safety for controlling a remote actuator.

GridStat was first demonstrated in 2002, and has had live utility data since 2003. In 2007
it was involved in a pilot project spanning two United States Department of Energy National
Laboratories. The QoS Brokers are written in Java, and there are both Java and C++ versions of
the status router. We anticipate that GridStat will be involved in two or more large pilot projects
starting in the next 12–18 months.

Future work planned for GridSTat involves developing policy languages for many configuration
and adaptation capabilities in GridStat; hardening and documenting the code; finishing a network
processor-based status router implementation; replicating QoS Brokers to tolerate benign and then
Byzantine failures; ongoing work on authentication mechanisms for the management plane; and
many other pragmatic tasks such as supporting data formats currently used in the electric power
grid.

18



References

[1] S. Abelsen. Adaptive GridStat information flow mechanisms and management for power grid
contingencies. Master’s thesis, Washington State University, 2007.

[2] D. Bakken, A. Bose, and S. Bhowmik. Survivability and status dissemination in combined
electric power and computer communications networks. In Proceedings of the Third Infor-
mation Survivability Workshop (ISW-2000), October 2000.

[3] D. Bakken, A. Bose, C. Hauser, I. Dionysiou, H. Gjermundrød, L. Xu, and S. Bhowmik.
Towards more extensible and resilient real-time information dissemination for the electric
power grid. In Proceedings of Power Systems and Communications Systems for the Future,
International Institute for Critical Infrastructures, Beijing, China, September 2002.

[4] D. Bakken, T. Evje, and A. Bose. Survivable status dissemination in the electric power grid. In
Proceedings of the Information/System Survivability Workshop, in Supplement Proceedings of
the International Conference on Dependable Systems and Networks (DSN-2001), July 2001.

[5] D. E. Bakken, A. Bose, and C. H. Hauser. EC efforts in scada-related research: Selected
projects. Technical Report EECS-GS-008, Washington State University, October 2006.

[6] D. E. Bakken, C. H. Hauser, H. Gjermundrød, and A. Bose. Towards more flexible and
robust data delivery for monitoring and control of the electric power grid. Technical Report
EECS-GS-009, Washington State University, May 2007.

[7] K. Birman. Can web services scale up? Computer, 38(10):107–110, Oct. 2005.

[8] K. Birman. The untrustworthy web services revolution. Computer, 39(2):98–100, Feb. 2006.

[9] I. Dionysiou, K. H. Gjermundrød, and D. Bakken. Fault tolerance issues in publish-subscribe
status dissemination middleware for the electric power grid. In Supplement of the 2002
International Conference on Dependable Systems and Networks (DSN-2002), Washington,
DC, June 2002.

[10] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Mermarec. The many faces of pub-
lish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, July 2003.

[11] H. Gjermundrød. A flexible QoS-managed status dissemination middleware framework for
the electric power grid. PhD thesis, Washington State University, USA, August 2006.

[12] J. D. Glover and M. S. Sarma. Power System Analysis. Brooks/Cole Thompson Learning,
2002.

[13] C. Hauser, D. Bakken, and A. Bose. A failure to communicate: Next-generation communi-
cation requirements, technologies, and architecture for the electric power grid. IEEE Power
and Energy, 3(2):47–55, March/April 2005.

[14] S. Horowitz, D. Novosel, V. Madani, and M. Adamiak. System-wide protection. Power and
Energy Magazine, IEEE, 6(5):34–42, September-October 2008.

19



[15] V. S. Irava. Low-cost delay-constrained multicast routing heuristics and their evaluation.
PhD thesis, Washington State University, USA, August 2006.

[16] P. Jiang. A naming and directory service for publisher-subscriber’s status dissemination.
Master’s thesis, Washington State University, 2004.

[17] R. A. Johnston, C. Hauser, K. H. Gjermundrød, and D. Bakken. Distributing time-
synchronous phasor measurement data using the GridStat communication infrastructure. In
Proceedings of 39th Annual Hawaii International Conference on System Sciences (CD/ROM),
Kauai, Hawaii, January 2006.

[18] J. Kaiser, C. Brudna, C. Mitidieri, and C. Pereira. COSMIC: a middleware for event-based
interaction on can. In Proc. 9th IEEE Int. Conf. on Emerging Technologies and Factory
Automation (ETFA 2003), volume 2, pages 669–676, September 16-19 2003.

[19] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol (DCCP). RFC
4340 (Proposed Standard), Mar. 2006.

[20] R. Meier and V. Cahill. Taxonomy of distributed event-based programming systems. The
Computer Journal, 48(5), 2005.

[21] S. Muthuswamy. System implementation of a real-time, content based application router for
a managed publish-subscribe system. Master’s thesis, Washington State University, 2008.

[22] D. Novosel, V. Madani, B. Bhargava, K. Vu, and J. Cole. Dawn of the grid synchronization.
Power and Energy Magazine, IEEE, 6:49–60, January-February 2008.

[23] Object management group, data distribution service (version 1.2), 2007.
http://www.omg.org/spec/DDS/.

[24] L. Ong and J. Yoakum. An Introduction to the Stream Control Transmission Protocol
(SCTP). RFC 3286 (Informational), May 2002.

[25] E. Solum. Achieving over-the-wire configurable confidentiality, integrity, authentication and
availability in GridStat’s status dissemination. Master’s thesis, Washington State University,
2007.

[26] Specification for the North American Synchrophasor Initiative (NASPI), April 2008.

[27] Statement of work: Specification for North American Synchrophasor Inititiative (NASPI),
May 2008. http://www.naspi.org/resources/dnmtt/quanta sow.pdf.

[28] A. S. Tanenbaum. Computer networks (4th ed.). Prentice-Hall, Inc., 2003.

[29] K. Tomsovic, D. Bakken, M. Venkatasubramanian, and A. Bose. Designing the next gen-
eration of real-time control, communication and computations for large power systems. In
Proceedings of the IEEE (Special Issue on Energy Infrastructure Systems), May 2005.

20



[30] U.S.-Canada Power System Outage Task Force. Final report on the August 14, 2003
Blackout in the United States and Canada: Causes and Recommendations, March 2004.
https://reports.energy.gov/BlackoutFinal-Web.pdf.

[31] E. Viddal. Ratatoskr: wide-area actuator RPC over GridStat with timeliness, redundancy,
and safety. Master’s thesis, Washington State University, 2007.

[32] T. Yang, H. Sun, and A. Bose. Two-level pmu-based linear state estimator. In IEEE PES
Power Systems Conference and Exposition-PSCE, Seattle, WA, 2009.

[33] Y. Zhang, C. Gill, and C. Lu. Reconfigurable real-time middleware for distributed cyber-
physical systems with aperiodic events. In The 28th International Conference on Distributed
Computing Systems (ICDCS 2008), June 17-20 2008.

[34] J. Zinky, L. O’Brien, D. Bakken, V. Krishnaswamy, and M. Ahamad. PASS: A service for
efficient large scale dissemination of time varying data using CORBA. In International
Conference on Distributed Computing Systems, pages 496–506, Austin, TX, June 1999.

[35] J. A. Zinky, D. E. Bakken, and R. E. Schantz. Architectural support for quality of service
for CORBA objects. Theory and Practice of Object Systems, 3(1), 1997.

21



Characteristic Internet EPInet

Network size:hosts 108−9 interconnected hosts world-
wide

105 hosts in a power grid(Eastern
US, Western Europe etc.)

Network size:routers 107−8 IP routers 103−4 FEs in a power grid
Network Design Goal Provide best-effort delivery for

any user and purpose
Provide guaranteed QoS in sev-
eral dimensions for specific users
and purposes

Admission Control Perime-
ter

None Complete

Fraction of Managed Traffic None/Very Little Almost all. All traffic subject to
policing

Central Topology knowledge Not attempted, because of large
scale and dynamicity

Feasible, because of small scale
and slow changes

Topology changes Often & without warning Not often & virtually always with
warning

Frequency of route changes Frequent; route changes com-
puted using distributed algo-
rithms that may converge slowly
in the face of changing topology

Infrequent; route changes com-
puted centrally assuming stable
topology

Latency Level Achievable Slow to Medium Very Fast
Latency Predictability Poor Very Good to Excellent
Recovery delay after dropped
packet (with “reliable” deliv-
ery)

High (timeout waiting for data or
acknowledgement)

Zero (redundant copy sent over
disjoint path arrives virtually at
the same time)

Forwarding Unit Uninterpreted packet PUV update
Traffic Predictability Low Very High
Elasticity of QoS require-
ments

None/Low High

Multicast: multiple sub-
scribers to a single update
flow

A small fraction of the overall
traffic; does not justify significant
optimization

The common case. Multiple sub-
scribers to a single update flow
may have different latency and re-
liability requirements. Significant
opportunity for optimization.

Synchronization between
flows

No (a few multimedia apps
notwithstanding, but these are
not handled at network/transport
layer, rather app or MW)

Yes, temporal synchronism be-
tween flows originating at dif-
ferent sources (example: PMUs
when rate filtering)

Table 1. Internet and EPInet Characteristics
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System QoS
Per-Sub

Permanence Abstraction Real-Time Forward
Logic
Time

Redundancy

Publisher Subscriber Hard Soft Spatial Temporal

OMG DDS ?Codeable Both Varied Varied LAN WAN Delivery ?Codeable Yes
MOM/Queues ?Codeable Persistent Message

& Queue
Message
& Queue

No LAN Delivery Some No

ESB ?Codeable Persistent
(Mostly)

Message
& Queue

Message
& Queue

LAN WAN Delivery Some No

File Transfer No Persistent File File No No Delivery No No
Web
Svcs/SOA

No (Undefined) Varied Varied No No Delivery No No

GridStat &
PUV

Yes Transient Variable
Update

Updated
Variable

WAN WAN Setup Yes Yes

PASS Codeable Persistent N/V
pair

Lg.
Record

No No Delivery Codeable Codeable

WSN-PUF Codeable Transient Variable
Update

Updated
Variable

No LAN Delivery No yes

COSMIC No Transient Event Event LAN LAN Delivery No No
RT TAO Codeable Transient Event Event LAN LAN Delivery Codeable No

Table 2. Summary of Related Work
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