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Abstract

GridStat is a QoS-managed publish-subscribe frame-
work for data delivery for the electric power grid. Grid-
Stat’s Data Plane delivers data updates through a network
of middleware-level Status Routers. Subscriptions are man-
aged by GridStat’s hierarchical QoS Management Plane.
The path allocation computations are typically done of-
fline and beforehand, but are complex, not only due to the
multiple QoS constraints but the number of status routers
that would be involved an entire power grid. In a cri-
sis, many entities may suddenly wish to add a large num-
ber of subscription requests, which would in practice over-
whelm the subscription allocation mechanisms. In this pa-
per we present a mechanism called modes, which lets Grid-
Stat change routing tables quickly. Modes can be either
global, or only active at a given scope within the hierarchy.
We present the design and experimental evaluation of Grid-
Stat modes and of two different mode change algorithms
that provide different tradeoffs of performance and consis-
tency.

1 Introduction

The electrical power grid is highly dependent on data
monitoring and control capabilities in order to better under-
stand and manage power transmissions over a highly com-
plex network of transmission lines and substations. SCADA
(Supervisory Control and Data Access) has in the last 40
years served as the electrical power grid’s communication
system and incorporates the requirements and network tech-
nologies from the time that it was developed. The require-
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ments for communication in the electrical power grid are
changing [7]. Growing concerns about terrorist attacks,
changes in the power flow structure after the regulatory re-
structuring in the 1990’s, new uses of technologies (Intelli-
Grid [3]) and an increased overall load to capacity ratio of
the transmission line system demand a more flexible and
adaptive communication network. The SCADA communi-
cation system features a centralized star-topology, point to
point communication, lack of multicast, severe bandwidth
constraints and proprietary protocols which are not suffi-
cient to meet the requirements of today’s grid. Further dis-
cussion of the limitations of SCADA can be found in [6]
and [2].

GridStat is designed to address the need for a flexible and
robust communication system for the electrical power grid
using a specialized publish-subscribe paradigm [5]. Grid-
Stat middleware manages network resources, enables reli-
able delivery of data to any point and provides QoS (Qual-
ity of Service) for data streams. GridStat hides the details
of lower-level network capabilities from application devel-
opers in order to enable the communication system to be
deployed across different network technologies, operating
systems, programming languages and device types. Grid-
Stat is divided into two planes; the management plane and
the data plane. The management plane consists of a hier-
archy of QoS brokers that collectively manage resources
and subscriptions in the data plane. The data plane is a
virtual message bus that lets publishers provide data to the
network and enables subscribers to establish subscriptions
to status data through a status router network. The use of
QoS, on a per-subscription basis, allows subscribers to spec-
ify multiple redundant delivery paths (spatial redundancy),
subscription interval and delay. Furthermore, GridStat pro-
vides status data delivery to multiple recipients at different
rates through the multicast property and the ability to con-
trol and switch routing tables in the status router network at
run-time through the use of modes.



A mode contains the necessary forwarding rules for a set
of subscriptions. Using pre-configured modes allows the
status router network to quickly switch between bundles of
subscriptions, an action called a mode change. The pro-
cess of establishing individual subscriptions is a resource-
intensive operation requiring deallocation and allocation of
subscriptions. Doing these computations at run-time is ex-
pensive and may result in unsatisfactory subscription delays
[8]. Modes allow subscription bundles to be allocated and
pre-loaded into the status routers’ routing tables and then
control which routing tables the status router network uti-
lizes at any given time.

The mode change mechanism will help utility compa-
nies’ control centers, regional control centers, ISOs and
nation-wide monitoring centers to perform pre-contingency
planning for communication needs and to switch subscrip-
tion bundles when contingencies do occur in the electrical
power grid. For example, modes are one way to exploit
GridStat’s capability for data load shedding in the commu-
nication infrastructure in analogy with the power load shed-
ding in the electrical power grid. For example, subscribers
could specify two QoS sets: the desired QoS and minimal
acceptable QoS, and the management plane can automati-
cally switch between them when the network is congested.

The research contributions of this paper are:

• Global and hierarchical modes: QoS brokers define
and use modes to adapt communication in their respec-
tive administrative domains.

• Multiple simultaneously active routing tables in the
data plane and the ability to switch between routing
tables at run-time.

• Design and implementation of two mode change algo-
rithms with different tradeoffs.

• Experimental evaluation comparing the mode change
algorithms in terms of performance, resource usage
and variance (time) in the presence of various tempo-
rary network conditions.

2 Status Dissemination and GridStat

GridStat is a publisher-subscriber framework that targets
application domains where the majority of data are made
available at periodic time intervals. It is mainly designed to
serve as a flexible and robust communication system for the
electrical power grid. Figure 1 shows a small scale GridStat
deployment subdivided in a management plane and a data
plane. The management plane consists of QoS broker mod-
ules that collectively control and manage resources in the
data plane. The data plane is populated by status routers,
publishers and subscribers, where publishers provide data

and subscribers can subscribe to data. The management hi-
erarchy handles subscription requests and establishes paths
from the publisher to the subscriber through a sequence of
status routers. More detailed information about GridStat
and other baseline mechanisms can be found in [4] and [6].

Figure 1. Status dissemination architecture

2.1 Management Plane

The lowest level of the management plane consists of
leaf QoS brokers. A leaf QoS broker manages and pro-
vides services to a set of status routers, publishers and sub-
scribers. The leaf QoS broker manages a flat collection
of status routers, called a cloud. A leaf QoS broker has
complete control over all available resources and the corre-
sponding resource usage in the cloud. The resources include
status routers, publishers, subscribers and the links connect-
ing them. Leaf QoS brokers must control and make sure
no allocated subscriptions exceed an event channel’s band-
width constraints. Additionally, the leaf QoS brokers must
ensure that routing tables and computational resources are
not overloaded in the status routers. The main responsibility
of a leaf QoS broker is to control the allocation or deallo-
cation of subscription paths between publisher-subscriber
pairs in its cloud, and to ensure that the allocated path satis-
fies the QoS requirements specified by the subscriber.

Interior QoS brokers denote all non-leaf QoS brokers in
the management hierarchy. Interior QoS brokers manage
multiple clouds and offer services to lower-level QoS bro-
kers, and whose main responsibility is to allocate and deal-
locate inter-cloud subscriptions.
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2.2 Data Plane

The data plane is a virtual message bus where subscrip-
tion data flows between publishers and subscribers. The vir-
tual message bus consists of interconnected status routers,
whose main purpose is to forward status events from pub-
lishers to the subscriber applications that requested the data.
A status router is in effect a router with additional function-
ality to provide forwarding of status events when subscribed
to and at the right rate (rate filtering). The management
plane controls the content of the routing tables in the status
routers, and leaf QoS brokers inform status routers to add,
remove or modify the content corresponding to a subscrip-
tion allocation or deallocation request.

Since resources are monitored and controlled, the la-
tency from the publisher to the subscriber can be bounded.
When registering a subscription, subscribers associate a
set of QoS parameters with the subscription request, and
among these are a subscription interval, a latency request
and redundancy. The management hierarchy attempts to
find one or more disjoint paths (QoS redundancy) between
the publisher and subscriber that meet the latency request
parameter. If no such path exists, the subscription request is
rejected.

3 Mode Change Mechanisms and Manage-
ment

In this section we present the foundation for global and
hierarchical modes and introduce the notion of a mode
change.

3.1 Overview and Mode Terminology

A mode definition consists of an ID, a name and a set of
data plane subscriptions. Each mode definition is owned by
a single QoS broker in the management hierarchy. Modes
defined and owned by a QoS broker constitute a mode set.
Exactly one of the modes in a mode set is active at any given
time and is called the current operating mode for that mode
set. Every QoS broker always operates in one mode. When
a QoS broker operates in a given mode all subscriptions
contained in that mode are active in the data plane.

Status routers use modes to route status events that be-
long to the currently active set of operating modes. More
specifically, a status router forwards a status event if it be-
longs to a subscription that is in the operating mode of at
least one QoS broker. Each status router operates in as
many modes as there are levels in the management hierar-
chy above it. For instance, with x levels in the management
hierarchy, a status router has x QoS broker ancestors (called
its ancestor scope), and will therefore always operate in x

modes simultaneously. This enables coarse resource pro-
visioning between mode sets, e.g. a top level QoS broker
could control 40% of the available resources in its hierar-
chical scope while the QoS brokers beneath it would control
the remaining 60% of the resources.

Each status router maintains a separate routing table for
every mode defined in its ancestor scope. For example, in
a GridStat configuration with a management hierarchy con-
sisting of two levels, every status router will always operate
in two modes, and therefore use two separate routing tables
for routing (see Figure 2). Although a status router might
have tens or even hundreds of routing tables pre-loaded, ei-
ther in memory or on disk, only the routing tables that cor-
respond to the current operating modes of the QoS brokers
are used for status event forwarding.

3.2 Propagation of Modes

QoS brokers read mode definitions from their respective
configuration files and store the modes internally. Each leaf
QoS broker also acquires information about the modes that
are defined in its ancestor scope. The leaf QoS broker re-
quests all the modes that are defined in its ancestor scope by
contacting its parent QoS broker, which recursively repeats
the process until the request reaches the root QoS broker.
When the request returns, interior QoS brokers add their re-
spective mode identifiers and current operating mode to the
return packet. The leaf QoS broker stores the information
returned from the request for each ancestor QoS broker. The
ancestor mode set is used to inform status routers about all
defined modes and operating modes they will operate in.
The leaf QoS broker is responsible for updating the ances-
tor mode set during mode change operations to reflect the
operating modes of its parent QoS broker.

A subscriber application is informed about all modes that
are defined in its ancestor scope when it registers with its
edge status router and later when changes occur. Knowing
the set of modes allows a subscriber application to select
modes for its subscriptions and include this as part of its
subscription requests to the management hierarchy.

3.3 Mode Change Operations

Using modes, a QoS broker can quickly switch routing
tables in the data plane. This enables the management plane
to decide which status events are allowed to be forwarded
through the data plane at any given time and delivered to
the subscriber applications. Figure 2, shows how operating
modes are used in both the management plane and in the
data plane. Each QoS broker has its own mode set and op-
erating mode. All status routers in cloud B operate in Green
and Stable as the QoS brokers in their ancestor scope, QoS
broker A and B, operate in Green and Stable, respectively.
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Figure 2. Status dissemination architecture.

Inter-cloud subscriptions can operate in one or more of QoS
broker A’s three modes Green, Yellow and Red since those
modes control and manage routing tables in both clouds.
Note that an inter-cloud subscription is unaffected by the
modes in which leaf QoS broker B and C operate. If a sub-
scription is configured to operate in mode Yellow only, sta-
tus router B1 does not forward status events to B2 as it is
using mode Green’s routing table which contains no for-
warding information for the subscription.

A QoS broker acts as a coordinator in a mode change
operation. A mode change operation that is initiated by a
coordinator affects all the status routers and QoS brokers in
its hierarchical scope. For example, the hierarchical scope
of QoS broker A is QoS broker B, cloud B, QoS broker
C and cloud C. A mode change operation informs all status
routers in the hierarchical scope of the coordinator to switch
to the routing table associated with the operation. The num-
ber of status routers involved in a mode change operation
varies with the population of status routers in the affected
clouds and at what level in the management hierarchy the
mode change operation was initiated. Local mode change
operations (within a cloud) might involve tens or hundreds
of status routers, while a mode change operation initiated at
an interior QoS broker can potentially involve several thou-
sand status routers. One of the major challenges is to ensure
that all the status routers involved in a mode change opera-
tion receive and switch to the proper routing table.

A mode change operation that switches the routing ta-
bles in all of the involved status routers at the expected time
is called a consistent mode change operation. Otherwise
the operation is called an inconsistent mode change oper-
ation. Additional recovery mechanisms (see Section 3.5)
must be used in order to restore the operating modes on the
status routers that are inconsistent. An inconsistent mode
change operation will most likely result in QoS violations
for some subscriptions, which will not occur after a consis-
tent mode change operation. However, since subscription

traffic is rate-based, the loss of some status events during
a mode change operation is tolerable because the next sta-
tus update value for a particular subscription is due to arrive
within a short time period.

Two mode change algorithms have been implemented in
GridStat. The hierarchical mode change algorithm uses the
management hierarchy to disseminate mode change opera-
tions and gather acknowledgements from status routers and
QoS brokers. The hierarchical mode change algorithm en-
ables all subscriptions that are registered to operate in both
the coordinator’s current and new modes to flow during the
entire mode change. Thus, subscribers with subscriptions
in both the current and new modes receive an uninterrupted
stream of status events during hierarchical mode change op-
erations. The hierarchical mode change algorithm is dis-
cussed in more detail in Section 4.

The flooding mode change algorithm disseminates mode
change operations directly on the data plane using Grid-
Stat’s flooding mechanism. When a status router receives a
mode change operation it forwards it on all outgoing event
channels, except the event channel on which it received the
operation. Redundant copies are discarded. Mode change
operations in this scheme carry a target time (in the future)
for the mode change to occur. The flooding mode change
algorithm is discussed in more detail in Section 5.

The two mode change algorithms provide different trade-
offs. The hierarchical mode change algorithm is a resource
intensive algorithm using five message phases in order to
enable subscriptions present in both the before mode and
after mode, e.g., from Green to Yellow, to deliver status up-
dates throughout the transition. In each message phase the
coordinator initiates and propagates a mode change phase
message down to all status routers in its hierarchical scope.
The next phase cannot be initiated until the previous phase
has completed which occurs when the coordinator has re-
ceived aggregated acknowledgments from all status routers
and QoS brokers in its scope. The flooding mode change
algorithm, on the other hand, is a best-effort algorithm. It
is efficient, in terms of resource use and performance, but
it does not guarantee that all subscriptions will flow during
the mode change operation. The flooding mode change al-
gorithm directs the status routers to switch modes at a given
time and therefore requires status routers to be time syn-
chronized.

3.4 The RPC Mechanism

Communication related to mode change operations uti-
lizes some of the unique features of GridStat’s RPC mech-
anism [11]:

• Mode change communication over RPC within the
management hierarchy or from the management hier-
archy to the data plane can utilize spatial redundancy.
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The degree of spatial redundancy is itself adjustable
using the mode mechanism.

• RPC delivery confirmations provide the means for the
client to resend a mode change message, or schedule
one for a later time, when a delivery confirmation is
not received within the expected time window.

An RPC connection can be configured to resend the call
when a delivery confirmation is not received within the ex-
pected time window. More specifically, the RPC mecha-
nism resends the call after a preconfigured timeout and em-
ploys the temporal redundancy scheme as many times as the
connection setup states.

3.5 Recovery Mechanisms and Acknowl-
edgment Aggregation

In order to tolerate some degree of network failures and
to ensure that mode change operations are eventually con-
sistent, a recovery mechanism was implemented to assist
the hierarchical and flooding mode change algorithms. The
recovery mechanism is triggered by a QoS broker that de-
tects missing mode change acknowledgments caused by
failed QoS brokers, failed status routers or link failures. It
then attempts to resolve the inconsistency.

An important part of a mode change operation is to
gather acknowledgments from the participants in the oper-
ation. A status router that receives a mode change opera-
tion responds with a mode change acknowledgment to its
leaf QoS broker. When a leaf QoS broker receives the first
acknowledgment for a particular mode change operation it
immediately starts an aggregation round to gather acknowl-
edgments from its status routers. The leaf QoS broker stores
the name of the status router and the mode change iden-
tifier, and starts a timer. Additional acknowledgments are
registered in a similar manner. The leaf QoS broker stops
the aggregation round when all expected acknowledgments
have been received or if the timer expires. If all expected ac-
knowledgements have been received and the leaf QoS bro-
ker was itself the initiator of the mode change it updates
the operating modes table in its state and marks the mode
change operation as complete. If the coordinator is located
at a higher level in the management hierarchy, the leaf QoS
broker updates its ancestor modes table and sends an ac-
knowledgment to its parent QoS broker for further process-
ing.

Interior QoS brokers go through the exact same sequence
of steps as the leaf QoS brokers, starting aggregation rounds
when the first acknowledgment from one of their direct chil-
dren QoS brokers is received. The process continues until
the coordinator of the mode change operation has finalized
the aggregation round.

When an aggregation round times out, a QoS broker ini-
tiates the recovery mechanism by storing the mode change
operation and then, in collaboration with its children QoS
brokers, continually attempts to restore the state of the
deemed inconsistent status routers or QoS brokers. More
details on the recovery mechanism can be found in [1].

4 Hierarchical Mode Change Algorithm

Recall that a main goal of the hierarchical mode change
algorithm is to ensure that subscriptions that exist in both
the before mode and after mode continue to meet their QoS
delivery promises throughout the mode transition. This in-
volves ensuring that routing tables in the status routers con-
tinue to forward status events for these subscriptions and
also ensuring that no links are overloaded with traffic dur-
ing the transition. The hierarchical mode change algorithm
is divided into five distinct phases. The five phases for a
mode change initiated by QoS broker A from Green to Yel-
low are:

1. The inform phase - All edge status routers, at the
direction of QoS broker A, inform their subscribers
about the upcoming mode change. This phase ensures
that all subscribers know that QoS violations may oc-
cur for some of their subscriptions prior to switching
routing tables.

2. The prepare phase - Edge status routers switch to the
temporary routing table Green ∩ Yellow. The higher
subscription interval (lower rate) of each subscription
in the intersection is used in this phase in order to re-
duce the load on downstream status routers. This phase
ensures that subscription traffic that belongs in both
modes (Green and Yellow) is forwarded through the
status router network. Subscription traffic that belongs
to only Green or Yellow is dropped at the edge sta-
tus routers. This step in the hierarchical mode change
algorithm eliminates any possibility of link overload
during the transition.

3. The internal change phase - Internal status routers
switch to Yellow’s routing table. Since all edge sta-
tus routers operate in a temporary routing table and
only forward a smaller set of subscriptions (in mode
Green and Yellow), the internal status routers can
safely switch to mode Yellow without overloading any
status routers downstream.

4. The edge change phase - Edge status routers switch
from the temporary routing table Green ∩ Yellow to
Yellow’s routing table. Since internal status routers op-
erate in Yellow and expect to receive subscription traf-
fic for mode Yellow, it is safe for edge status routers to
finally switch.
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5. The commit phase - Edge status routers inform their
subscribers that the mode change is complete. This
phase ensures that subscribers have correct expecta-
tions regarding their subscriptions’ quality of service.

Common for all the phases in the hierarchical mode
change algorithm is the propagation of the operation down
the management hierarchy towards the data plane. The co-
ordinator of the mode change operation sends the operation
to all its children QoS brokers, and they repeat the process
until the operation reaches the leaf QoS brokers. The leaf
QoS brokers forward the mode change operation to each
individual status router and await acknowledgements (see
Section 3.5). When a leaf QoS broker has received ac-
knowledgment from all status routers in its cloud, it for-
wards a single acknowledgment to its parent QoS broker,
which then repeats the process until all acknowledgements
have been gathered by the coordinator. The coordinator pro-
ceeds to initiate the next phase of the hierarchical mode
change algorithm. More details on the hierarchical mode
change algorithm can be found in [1].

5 Flooding Mode Change Algorithm

The flooding mode change algorithm is an alternative
to the hierarchical mode change algorithm that switches
modes more quickly but with greater chance that delivery
will be interrupted during a transition. As previously de-
scribed, the flooding mode change algorithm delivers mode
change operations directly to the status routers using Grid-
Stat’s flooding mechanism. In order to utilize the flood-
ing mechanism, each QoS contains a publisher instance
that connects to some edge status router in the QoS bro-
ker’s hierarchical scope. The QoS broker publishes mode
change operations through the publisher instance and sta-
tus routers forward the operation to all their status router
neighbors. The flooding eventually stops when all status
routers have been informed. The flooding mechanism ben-
efits from the redundancy in the data plane and is thus more
resilient to network failures than is the hierarchical mode
change algorithm. Whereas the hierarchical mode change
algorithm attempts to preserve the subscriptions registered
in the two involved modes, the flooding mode change al-
gorithm switches directly to the new mode. That is, upon
receiving a mode change operation through the flooding
mechanism, a status router immediately responds with an
acknowledgment to its leaf QoS broker and it activates the
new mode at the destined future time. Figure 3 shows a
flooding mode change initiated by QoS broker A. The op-
eration is delivered to all participants within five message
rounds. The diagram assumes an equal link delay, and the
link labels refer to the message round in which the operation
is transmitted across the link.
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Figure 3. The flooding mechanism.

More details on the flooding mode change algorithm can
be found in [1].

6 Experimental Evaluation

The following sections describe a subset of the exper-
imental evaluation that we conducted. Refer to [1] for a
more in-depth analysis. The experiments were conducted
on a 14-node cluster. The hardware and software consisted
of:

• 14 Intel Dual Xeon 3.06 GHz, 1 GB of RAM and 1
Gb network interface running Redhat 9 (2.4.20-8smp
kernel).

• 1 Intel Pentium III (Coppermine) 1 GHz, 512 MB of
RAM and 100Mb network interface running Ubuntu
6.10 (Edgy) Linux Distribution (2.6.17.10 kernel).

• Java Standard Edition 5.0 (build 1.5.0 11-b03).

The cluster nodes were used to run all the GridStat entities
necessary to conduct the various experiments. The Ubuntu
system ran a link emulator that provided controlled link la-
tency and link loss on a per-link basis for the data plane
links.

6.1 GridStat Settings

Figure 4 and Figure 5 show the GridStat experimental
setup with 7 QoS brokers and 20 status routers for the hier-
archical and flooding mode change algorithms, respectively.
Each cloud consists of five status routers: three edge status
routers and two internal status routers. The data plane ex-
ecutes on a total of 8 nodes; in each cloud, two and three
status routers share a node. The management hierarchy exe-
cutes on a total of 6 nodes; A and B1 share a node, and every
other QoS broker executes alone on the remaining nodes.
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Figure 4. GridStat experimental setup - hier-
archical algorithm.
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Figure 5. GridStat experimental setup - flood-
ing algorithm.

QoS brokers are configured to communicate with other
QoS brokers, and leaf QoS brokers with status routers,
through dedicated RPC connections. RPC connections be-
tween leaf QoS brokers and status routers utilize two redun-
dant paths, while inter-QoS broker RPC connections uti-
lize one path only due to a current limitation in GridStat.
Additionally, whenever a GridStat entity does not receive
an RPC acknowledgment after some timeout, it resends the
RPC call. The RPC retry timeout value depends on the ex-
perimental setup as the round trip time for the call and ac-
knowledgment depend on the link latency and the number
of event channel hops (Table 1).

The link emulator associates each link with a latency, a
probability of packet loss and a burstiness setting. When a
packet loss is triggered, the link consecutively loses as many
packets as the burstiness setting suggests. If the burstiness
setting is variable, e.g. 3-5, the link will at a minimum lose
3 consecutive packets, but no more than 5 (the actual num-
ber is subject to a uniform distribution). Furthermore, the
probability of triggering a packet loss is adjusted to the de-
sired packet loss probability setting divided by the mean

Link Latency Top Level Second Level Leaf Level
0 ms 10 10 10
1 ms 15 15 15
2 ms 30 25 20
4 ms 60 40 30
8 ms 120 70 55

Table 1. Experiment RPC retry timeouts.

burstiness setting. For example, with a packet loss probabil-
ity setting of 8% and a burstiness setting of 3-5, the trigger
probability is 8% / 4 = 2%. It is important to note that a
link will not trigger a new packet loss when in the middle of
an ongoing loss sequence, and that edge links, those from
publishers or subscribers to edge status routers, do not lose
packets.

6.2 Algorithm Comparison

Figure 6 depicts the average completion time (averaged
over 100 operations) for hierarchical mode change opera-
tions activated from the root QoS broker in the management
hierarchy. The y-axis denotes the average time in ms and
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Figure 6. Hierarchical mode change opera-
tions at the top level in the management hi-
erarchy.

the x-axis denotes the experiment setup in the form per link
packet loss rate: minimum consecutive packet loss - maxi-
mum consecutive packet loss.

As expected, the mode change times increase when the
per link probability of packet loss increases. When increas-
ing the link latency, the increase in mode change completion
times are more notable, which correlates to higher RPC la-
tencies and RPC retry timeout values.
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Figure 7 depicts the average completion time (averaged
over 100 operations) for mode change operations activated
from the leaf level in the management hierarchy. The exper-
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Figure 7. Hierarchical mode change opera-
tions at the leaf level in the management hi-
erarchy.

iments conducted at the various link latency settings show a
relatively flat trend, which suggests that the two redundant
paths utilized by the RPC connections between the leaf QoS
broker and its status routers are able to withstand link loss
up to 4% without any significant impact on the mode change
times. An 8% link loss setting increases the average mode
change times which clearly illustrates the impact of having
only two redundant paths between the leaf QoS broker and
its status routers. Figure 7 also shows the benefit of hav-
ing redundant paths down to each individual status router,
whereas the experiments in Figure 6 are more prone to link
loss as inter-QoS broker communication is conducted over
one communication path.

Figure 8 shows the average completion time (averaged
over 300 operations) for flooded mode change operations
activated from the root in the management hierarchy. As
mode change operations are disseminated directly onto the
data plane, the five graphs, one per latency setting, illus-
trate how resilient the flooded mode change algorithm is
against lossy links with various burstiness settings. With a
link latency setting set to 8 ms, the flooded mode change
reaches all the target status routers after approximately 45
ms, whereas the hierarchical algorithm requires 1200-3200
ms (Figure 6) depending on the link loss and burstiness set-
ting. The experiments conducted with 8% link loss passes a
threshold where the redundancy available in the data plane
is not able to propagate the mode change message to the far-
thest away status router according to the best path, or close
to the best path, so the average mode change time increases.
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Figure 8. Flooding mode change operations
at the top level in the management hierarchy.

6.3 Scalability Results

The following diagrams compare the same experiments
conducted at the three levels in the management hierarchy
in order to see how the algorithms scale when increasing
the hierarchical scope of the hierarchical algorithm or the
flooding domain of the flooding algorithm.

Figure 9 depicts experiments conducted at the three lev-
els in the management hierarchy with 8 ms link latency by
using the hierarchical algorithm. With no link loss, the di-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

8:3-5
8:1-4

8:1-2
8:1-1

4:3-5
4:1-4

4:1-2
4:1-1

2:3-5
2:1-4

2:1-2
2:1-1

1:3-5
1:1-4

1:1-2
1:1-1

0:0-0

Av
g.

 ti
m

e 
(in

 m
s)

Experiment setup (drop probability:minBurst-maxBurst)

Hierarchical mode change times: Scalability (8 ms link latency)

Mode change at top level: 8 ms link latency
Mode change at middle level: 8 ms link latency

Mode change at leaf level: 8 ms link latency

Figure 9. Scalability results using the hierar-
chical algorithm (8 ms link latency).

agram shows an increase in time between the experiments
conducted at the leaf and second level which is approxi-
mately double the mode change times achieved at the leaf
level, and the same results are seen between the experi-
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ments conducted at the second and top level. With increas-
ing link loss settings, the mode change completion times
for higher-level QoS broker activators increase, which illus-
trates the current limitation of supporting single inter-QoS
broker communication paths. The results are expected to
improve dramatically when inter-QoS broker communica-
tion paths support spatial redundancy.

The hierarchical mode change algorithm depends on the
number of levels in the management hierarchy, the length
of the RPC connections between the QoS brokers and the
corresponding delays. The experimental layout for the hier-
archical mode change algorithm in Figure 4 shows a binary
management tree, where the lengths of the RPC connections
are: 5 links between A and B1, 4 links between B1 and C1
and 3 links between C1 and each status router, and suggests
that the paths become longer higher up in the management
hierarchy. However, the lengths of RPC connections de-
pend on the topology of the data plane and at which status
router the QoS broker’s publisher and subscriber connect to
the data plane.

Figure 10 depicts experiments conducted using the
flooding algorithm initiated at three different levels in the
management hierarchy assuming 8 ms link latency. It
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Figure 10. Scalability results using the flood-
ing algorithm (8 ms link latency).

presents the average time at which all status routers have
received the mode change operation and gives a notion of
how much time should be allocated for flooding a mode
change operation to all status router participants. The Grid-
Stat topology in Figure 5 and the results from Figure 10
show that flooding mode change operations initiated by the
top level QoS broker require approximately 50 ms to deliver
the operation to all status router participants, even under dif-
ficult network conditions.

These experiments show an increase in mode change
completion times, caused by larger flooding domains, when

the coordinator resides higher up in the management hierar-
chy. A larger flooding domain increases the number of mes-
sage rounds for the mode change operation to reach all sta-
tus router participants. Another factor is the starting point
of the flooding mechanism, e.g., flooding from the middle
of the flooding domain is more efficient than initiating a
flood from an edge in the flooding domain. An example of
this is shown between the experiments conducted at the leaf
and second level. Flooding mode change operations acti-
vated from the second level initiate the flooding mechanism
from an edge in the flooding domain, while the leaf QoS
broker initiates the flooding mechanism from the center sta-
tus router in its single administrative cloud. This, in effect,
means that the leaf level requires two message rounds to
disseminate the operation to all status router participants,
while the second level requires four message rounds.

6.4 Link Traversals

Table 2 shows the number of links traversed by both
mode change algorithms. The number of traversals is aver-
aged over all the experiments conducted at a specific level
in the management hierarchy. For example, the hierar-
chical algorithm at the top level traverses a total of 2124
event channels, averaged over all experiments conducted
at that level. The hierarchical mode change algorithm re-
quires more link traversals since the coordinator dissemi-
nates mode change operations through the management hi-
erarchy and towards the data plane. The flooding mode
change algorithm, on the other hand, saves a trip through
the management hierarchy and uses it only for aggregating
acknowledgements up towards the coordinator.

Algorithm Top Level Second Level Leaf Level
Hierarchical 2124 833 340
Flooding 367 165 84

Table 2. Link traversals

7 Related Work

Given that both GridStat and the global and hierarchical
mode change mechanism address novel problems there is
little closely related work. One loosely related work is [10],
which develops the principle of Selective Notification (SN).
The underlying assumptions of this work are very different
from that of GridStat (GS) and this mode change work. In
terms of the manangement relationship, GS assumes that
this is largely static while SN assumes it is highly dynamic.
This allows GridStat to optimize data delivery and also
switch many subscriptions at once, while SN is considering
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more general issues involving dynamically (re)establishing
the management relationship of a given node.

Previous work has been done in network routing using
multiple simultaneously-active routing tables for differenti-
ated QoS routing [9, 12]. More specifically, two routing ta-
bles are used; one for QoS traffic and another for best-effort
traffic. This allows for differentiated routing strategies for
the two traffic classes. For example, QoS traffic requiring
lower drop rates could be forwarded along less-loaded paths
reducing the probability of drops due to congestion at the
expense of longer paths and thus higher delay. The mecha-
nisms proposed in this paper share the property of previous
work in the area of supporting multiple routing tables, but
differ in that a status router is collectively managed by a set
of QoS brokers where each QoS broker controls a distinct
set of routing tables, and has the ability to switch between
the routing tables at run-time.

8 Conclusions

This paper has presented an implementation of global
and hierarchical mode change mechanisms and manage-
ment in GridStat, which provides a novel way to switch
between bundles of subscriptions at run-time. The power
grid industry can benefit from this mechanism in GridStat
by identifying and creating distinct subscription sets to pro-
vide specifically needed information during various criti-
cal situations in the electrical power grid. Furthermore,
GridStat’s modes implementation enables load shedding for
data streams and corresponds to how load shedding enables
transmission adjustments in the electrical power grid.

Two mode change algorithms that offer different trade-
offs with respect to consistency, resource usage and speed
have been presented. The hierarchical mode change algo-
rithm enables subscriptions present in both the old and new
modes to flow during a mode change operation through five
execution phases. In addition, the hierarchical mode change
algorithm prevents bandwidth, status router computational
resource and queue overloads. The flooding mode change
algorithm is an efficient, best-effort algorithm that informs
status routers to change modes through the flooding mecha-
nism. However, the flooding mode change algorithm is not
able to prevent overloads and does not guarantee continuous
delivery during mode change operations.

The experimental evaluation addressed the mechanisms’
performance under various network conditions. The results
show that the hierarchical mode change algorithm scales
linearly when increasing the hierarchical scope of a mode
change operation. However, the algorithm adds a signif-
icant delay to the overall mode change completion time in
the presence of link loss. The reason for this behavior is that
QoS brokers do not utilize redundant subscription paths in
their established RPC connections. The hierarchical mode

change algorithm is expected to perform much better during
poor network conditions when GridStat supports redundant
communication paths in the management hierarchy. The
results show that the flooding mode change algorithm com-
pletes a mode change operation more than an order of mag-
nitude faster than the hierarchical mode change algorithm.
Furthermore, the flooding mode change algorithm is less
affected by link loss showing only minimal change in its
mode change completion times.
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