
Developer-Resistant Cryptography

Kelsey Cairns and Graham Steel

Abstract

“Properly implemented strong crypto systems are one of the few things
that you can rely on” - Edward Snowden. So why is mass surveillance so
successful? One (big) problem is endpoint security. Another is that strong
crypto systems are sufficiently difficult to implement that often either mis-
takes are made resulting in catastrophic loss of security, or cryptography
is not used at all. What can we do to make cryptography easier to use
and more resistant to developer errors?

1 Introduction

Our world is one of constant connectivity. Smart phones, laptops and tablets
allow us to access and share information at any time from almost any location.
The data we send – often personal and private information – is handled by
numerous applications, each of which has been shaped by numerous developers.
Alarmingly, the level of expertise of each of these developers is unknown to us.
A single mistake from one of them could expose our private data to unfriendly
observers.

Unfortunately, studies of application code suggest that developers make more
errors than we like to think. Multiple studies targeting Android apps reveal
alarming numbers of apps with incorrectly deployed cryptography. Attacks and
intrusions are actively made possible through developer error. Both professional
and amateur apps contain vulnerabilities exposing personal information. These
findings indicate a general gap between the knowledge level of many software
developers and the understanding necessary to correctly implement cryptogra-
phy using available APIs. With the Internet full of untrustworthy characters,
we cannot afford to be giving information away so easily. This paper approaches
this problem from the perspective that developers are not perfect and will make
mistakes, but by studying common problems, APIs can be designed to increase
the chances that developers will make the correct choices.

2 Difficulties With APIs

The field of cryptography is inherently difficult. Cryptographic API develop-
ment involves narrowing a large, complex field into a small set of usable func-
tions. Unfortunately, these APIs are often far from simple. For example, the

1

Submitted for publication. Author copy – do not redistribute.



SSL/TLS API contains hundreds of functions for a variety of uses: key gener-
ation and management, signature algorithms, ciphers, cipher modes, padding
schemes, etc [4]. Simply knowing which ciphers are considered secure is not
sufficient. Something as simple as the wrong padding scheme could cause vul-
nerabilities. All too often it is unclear which combinations are secure and which
are not. To complicate matters, default algorithms are not always the most
secure, requiring developers to recognize when and where algorithms need to be
specified.

Problems with obscure cryptographic APIs are compounded by a lack of
education for developers. Security best practices are not necessarily part of
every developer’s education. In addition, employers may be hesitant to invest
in training, preferring to take risks in order to ship products more quickly. In
other cases, developers may have the knowledge to implement correct security
but simply forget after working on more exciting tasks first.

Large numbers of incorrectly developed applications have been exposed by
multiple studies on Android apps. In 2012, Fahl et al. tested more than 13,000
apps for incorrect use of SSL/TLS [2]. Of the apps using SSL/TLS, 17% in-
cluded a potential vulnerability. The most common error was failure to check
certificates and simply reporting them valid. Other errors included accepting
incorrect certificates or certificates signed by untrusted certificate authorities.
Due to the popularity of some of these apps, the number of potentially compro-
mised devices was estimated between 39 and 185 million.

In 2013, study by Egele et al. revealed even more startling figures [1]. In
this study, six rules were defined which, if broken, indicated the use of insecure
protocols. More than 88% of the 11,000 apps analyzed broke at least one rule. Of
the rule-breaking apps, most would break not just one, but multiple rules. Some
of these errors were attributed to negligence, for example test code included in
release versions. However, in most cases it appears developers unknowingly
created insecure apps.

Android apps have provided a new wealth of applications to study, but the
problem of misused cryptography is much older. In 2002, Peter Gutmann wrote
about several types of insecurities commonly found in professionally developed
software [3]. It seems safe to conclude that incorrect cryptography is an ongoing
problem, with no single API specifically at fault. This problem seems likely to
continue without the design of better securities APIs.

3 Looking Forward

To combat developer induced security flaws, we consider the gap between appar-
ent developer knowledge and the knowledge needed to create secure applications.
We can tackle this problem from both sides: the human side and technological
side. This section presents some ideas towards minimizing the knowledge gap,
bearing in mind the reality that even knowledgeable developers are capable of
occasional errors.

The human aspect can be improved through better education for developers.

2



Sadly, this approach is unlikely to be a complete solution. It is unreasonable to
expect a developer to be a security expert when most of their time is spent on
other aspects of software design. One helpful step would be to ensure up-to-date
tutorials and thorough documentation so that developers who handled security
only occasionally would always have an accurate reference.

Rather than relying on developer improvement for the complete solution,
tackling the problem from the technological side could go a long way towards
reducing developer error. Taking this approach, we attempt to design APIs that
developers can intuitively use correctly. Each common vulnerability provides
valuable insight, pinpointing where APIs improvements would be most valuable.

One common source of confusion is the availability of insecure functions.
Such functions or combinations might be required for backwards compatibility
but should require extra effort to deploy. In addition, thought should be given to
designs which would allow defaults and easily accessible functions to be updated
between API versions. As cryptography advances, APIs should be updated
accordingly, without inducing new weaknesses in applications developed with
respect to earlier versions.

Another common error is the use of hard coded values as keys, salt values,
or seeds for random number generators. This error seems likely to have two
causes: either debugging code accidentally going into production or complete
developer misunderstanding. One avenue to explore would be API design where
any algorithm requiring a fresh random value would generate it on its own
rather than trusting the developer to supply one. The newly generated value
could be returned from the algorithm along with any other computed values.
A debugging flag might be used to prevent randomness for testing purposes,
allowing developers to test applications while making it easier to transition
from development to production stages. Relieving developers of some of the
responsibilities involved in key generation prevents attacks that take advantage
of hard-coded values.

The lack of SSL/TLS certificate checking found by Fahl et al. was a less
prolific error, but a very grave one. For handling certificates, APIs should
be very carefully crafted, minimizing the amount of code a developer must
write to verify a certificate. At the same time, the whole verification step
must be very hard to overlook. Additionally, generalized error handling could
minimize the temptation to ignore unauthorized certificates. Even if the intent
is only to ignore the error temporarily, it may be forgotten. With PKI used
so prevalently in today’s networks, secure verification and avoidance of man-in-
the-middle attacks is extremely important.

These ideas are only examples of how common errors could inspire the design
of future APIs. Another example is W3C’s WebCrypto API which will include
a smaller subset API specifically designed to be used easily by web developers
[5]. The “High-Level API” aims to eliminate the expertise necessary to work
with the full API, subsequently eliminating mistakes that inexperienced devel-
opers might make. Projects like these are steps towards more usable APIs and
potentially much more secure application development in general.

3



4 Conclusion

Application security is caught in a strange conflict: cryptography is increasingly
necessary to protect personal data, yet quite difficult to implement correctly.
The problem is compounded by complex APIs and the lack of expertise among
software developers in general. To decrease the number of security holes caused
by developers, we should not only do everything possible to educate developers,
but also make APIs easier to use. By examining errors commonly found in
today’s applications we can find the weaknesses of today’s APIs. Using what
we learn, we can design APIs that are more intuitive and easier to use correctly,
decreasing the overall chance of human error.

References

[1] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android applica-
tions. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 73–84. ACM, 2013.

[2] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, Lars
Baumgärtner, and Bernd Freisleben. Why eve and mallory love android:
An analysis of android ssl (in) security. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 50–61. ACM,
2012.

[3] Peter Gutmann. Lessons learned in implementing and deploying crypto
software. In Usenix Security Symposium, pages 315–325, 2002.

[4] OpenSSL. Openssl: Document, ssl(3), 2006. http://www.openssl.org/

docs/ssl/ssl.html

[5] Ryan Sleevi, David Dahl. Web Cryptography API. W3C Working Draft
(Work in progress.) http://www.w3.org/TR/WebCryptoAPI/

4


	Introduction
	Difficulties With APIs
	Looking Forward
	Conclusion

