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Abstract—Trustworthy critical power grid infrastructures re-
quire suitable cyber and power security protection efforts. Expert
system operators play a crucial role in protecting complex power-
grid networks; however, inefficient training of system operators
regarding potential cyber attacks and physical security threats
can potentially result in malicious compromises and catastrophic
consequences. In this paper, we present SECPSIM, a user-friendly
framework based on mathematical models of corrective control
actions against various intrusions and failure scenarios. Our
experimental results show that SECPSIM can help in learning
and provide appropriate corrective cyber-physical control actions
efficiently, and provide inexperienced individuals with an effective
tutorial user interface.

I. INTRODUCTION

The bulk electricity delivery system known as the power
grid is extremely fundamental to most aspects of modern
society. Power grid critical infrastructures form a vast and
interconnected cyber-physical network for delivering electric-
ity from generation plants to end-point consumers. Due to
their importance, power control networks have been a very
attractive attack surface for malicious attackers and nation-
state terrorists to penetrate in the network and consequently
cause catastrophic physical damage. Remote malicious cyber
attacks caused approximately $100 million of damage cost
in 2009 [1]. The most recent control system malware called
Stuxnet [2] was crafted to sabotage nuclear power plants.
Stuxnet specifically raised new questions about power grid
security protection which is strictly recommended by the
government as destruction of those systems would have a
debilitating impact on national security.

Currently, to protect power grid critical infrastructures,
expert power system operators, sitting in control network
rooms, monitor and control the cyber network as well as
the underlying physical system in order to guarantee secure
energy delivery. Traditionally, power grid operators gain their
expertise and experience solely through working with an
actual operational power grid where a mistake may result
in catastrophic consequences such as large-scale cascading
failures and power blackouts. Consequently, a better training
and experience transferring solution is needed to make sure
that inexperienced operators learn about the potential failures
and security incidents as well as how to respond to them and
take appropriate recovery actions with minimum effort and
without any potential damage on the actual operational power
grid. Additionally, there needs to be an assessment method to
evaluate whether the operator has gained sufficient amount of
expertise and hence can handle real-world conditions before
he/she is allowed to work on the actual infrastructure.

The Operator Training Simulator (OTS) [3] simulates the
electrical network, user interface and power system behavior.
The training simulator simulates the power system in a realistic
manner by providing static and dynamic responses to the
operators actions which are similar to those observed by

the operator in a real control center. The OTS has three
distinct functional areas; The Power System Model, the Con-
trol Center Model and the Instructor Module. It provides a
realistic environment for operators to practice operating under
normal, emergency or restorative conditions. However, OTS
does not simulate the cyber-side of the power grid and mainly
concentrates on simulation of the physical power system.

The objective of this paper is to propose SECPSIM, a
conceptual integration of a cyber-attack simulator into the
existing OTS, to study the difference in operator response to
contingencies with/without the consideration of cyber network
configuration. SECPSIM provides a complete simulated power
grid infrastructure including the control center environment as
well as the physical power system. Additionally, SECPSIM
is capable of realistic simulation of malicious cyber-physical
attacks that originate at remote cyber assets as well as reactive
and proactive corrective control actions to fix cyber exploita-
tions and power contingencies. Furthermore, during an inter-
action with an expert operator, SECPSIM learns appropriate
handling of various attack scenarios by creating mathematical
behavioral models. Consequently, SECPSIM makes use of
those models during an interaction with an inexperienced
operator to perform effective knowledge transfer so that in-
experienced operators also learn how to handle various attacks
appropriately.

In summary, the contributions of this paper are as follows:
1) We propose an integrated cyber-physical solution to model
corrective control actions against malicious intrusions against
the power-grid and accidental failures; 2) We introduce an
integrated cyber-physical power grid simulator that takes into
account cyber asset functionalities, power operations and the
cyber-physical interactions during adversarial attack scenarios;
and 3) We validate the SECPSIM framework on an emulated
cyber-physical power grid network infrastructure by imple-
menting a working prototype of the proposed algorithms.

II. SYSTEM OVERVIEW

The SECPSIM framework consists of several subsystems
that achieve its ultimate overall objective cooperatively. SECP-
SIM’s operation consists of two major phases: 1) learning from
simulation; and 2) training operators.

During the first phase, SECPSIM is used by expert op-
erators who go through several cyber-physical failure and
intrusion scenarios on the SECPSIM’s user friendly graphical
interface that is backed up with the cyber-physical system
and failure simulation engine. During the expert operator
interaction. SECPSIM observes his or her reactions, i.e., cor-
rective control actions, in every system state and calculates
a mathematical behavioral model that is a game-theoretic
Markov decision process with learned numerical parameters,
i.e., state security measures. It is noteworthy that the expert
operators could be replaced with a scripted list of appropriate
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control actions for various system states; such lists are usually
composed during the power grid planning efforts in practice
nowadays. More specifically, to accelerate the learning model
convergence, SECPSIM calculates a rough system model auto-
matically using the power-based impact index. Later on, during
the expert operator interaction, the rough values are further
refined to represent the expert knowledge precisely.

The second phase of the SECPSIM operation aims at
training inexperienced operators to consider both cyber and
power networks while selecting the corrective control actions.
SECPSIM’s ultimate goal is to achieve this objective using
a simulated environment without the need for interaction
with the actual operational critical infrastructure. In particular,
SECPSIM with the learned set of system models and param-
eters can be downloaded and used simultaneously by several
(possibly remote) inexperienced trainees. SECPSIM makes use
of its hybrid cyber network and power system simulation
engines to emulate realistic attack and failure scenarios for
the inexperienced who should observe the situation on their
screen and decide upon the optimal control action from the list
provided by SECPSIM. In the meanwhile, SECPSIM emulates
an expert operator internally by implementing a game-theoretic
optimization solution to pick the optimal control action ac-
cording to the created learned system models. Consequently,
SECPSIM compares the sequence of actions provided by each
trainee and the calculated optimal action sequence, and verifies
whether those two sequence match.

Cyber-Power System Simulator. To simulate the underlying
power system, SECPSIM uses PowerSimulator1 that simulates
the power system under a wide range of conditions includ-
ing thermal system overload, voltage collapse, off-nominal
frequency, Ferranti voltage rise, system islands, large angle
variations and cold load pickup. There are three major versions
of the PowerSimulator; Custom, Generic and Replica. For our
simulation purposes, we use the Generic PowerSimulator that
uses a hypothetical generic power system model called the
PALCO system to provide realistic power system experience.
The supported roles include transmission operator, balancing
authority area operator, reliability coordinator, generator oper-
ator, distribution operator and substation operator.

The Event Scenario feature in PowerSimulator allows
SECPSIM 1) to create a certain power system situation, e.g., a
series of line outages representing a situation which could be a
result of a storm. The recorded event scenario can be played in
any simulation run to train operators for taking control actions
related to that situation during light or heavy load periods;
and 2) to observe the operator’s reaction, i.e., sequence of
corrective actions, to create behavioral models of the expert
operators and evaluate the inexperienced trainees.

The mathematical power system simulation in SECPSIM
consists of algebraic equations that describe the instantaneous
relationship between variables and ordinary differential equa-
tions that describe the time varying properties of the variables.
Since there are many non-linearities in these equations, they
are solved numerically. The algebraic equations are typically
solved every one to five seconds. This delay serves to induce
the delay in data gathering through SCADA systems that
receive data by scanning RTUs at specified intervals of time.
The real and reaction power injections represented by algebraic
equations is given by [4]:

Pi = |Vi|2Gii +
N

∑
n=1,n6=i

|ViVnVin|cos(θin +δn +δi) (1)

1Available at http://www.powerdata.com/.

Qi =−|Vi|2Bii +
N

∑
n=1,n6=i

|ViVnVin|sin(θin +δn +δi) (2)

where, P - Real power in pu, Q - Reactive power in pu, G -
conductance in pu, B - Susceptance in pu, V - Voltage at a
bus in pu, Y Admittance in pu, θ - Admittance angle and δ

- Bus angle. Here V and δ are unknown variables that are to
be computed. This is done using Newton Raphson (numerical
method) by solving the following equation,

[J][
∆δ

∆V
] = [

∆P
∆Q

] (3)

where, J is called the jacobian matrix which is composed of
partial derivatives. When there is a change in system state,
such as the tripping of a line as a corrective action by an
operator or a malicious action by an attacker, the values of
the admittance matrix change. The power flow is run using
the new values to estimate the new state variables V and δ.
A contingency is usually associated with dip in voltage and
increase in bus angles at certain buses. During a blackout kind
of scenario, rapid dip in bus voltages and increase in bus angles
are observed, meaning that the system is starting to pull apart.
This is visualized in the control center screen of SECPSIM.

SECPSIM modifies the OMNET++ [5] framework to sim-
ulate the cyber network of the power grid, the corrective
countermeasure actions as well as adversarial intrusions. The
simulation includes intra-host network stack simulation and
the inter-host communication protocols. Individual packets are
simulated and RTT’s are exactly emulated. The transferred
messages among the hosts include both legitimate messages
as well as the malicious exploits that compromise the target
host systems stochastically to emulate the success or failure of
a compromise attempt by the attackers.

III. BEHAVIORAL MODEL CREATION AND LEARNING

To create a behavioral model of how each operator handles
various cyber-physical intrusion scenarios, SECPSIM uses the
inverse reinforcement learning-based parameter estimation [6].
We first discuss how SECPSIM models rational attackers and
defenders (responders) in a power-grid infrastructure using a
game-theoretic Markov decision process, and then discuss the
interactive parameter estimation algorithm in details.

Attacker vs. Responder Interaction. We describe how
SECPSIM models the attacker-vs.-defender interaction, i.e., the
selection procedures of corrective response and malicious ex-
ploitation actions by the operator and the attacker, respectively.
SECPSIM uses this model to infer security measure values
which the operator’s response strategies and the attacker’s
attack tactics are based on.

SECPSIM solves a competitive Markov decision process
(CMDP) to find the optimal action which maximizes the
expected accumulative long-run reward measure received after
a sequence of response and adversarial actions. Formally, A
CMDP Γ is defined as a tuple (S,A,Sec(.),P,γ) where S is the
security state space, assumed to be the set of compromised
cyber or power nodes. A is the set of actions, which itself
is partitioned into response actions and adversarial actions
depending on the player. For every s ∈ S, A(s) ⊂ A is the
set of admissible actions at state s. The measurable function
Sec : S → [0,1] is the security measure calculated for each
state, and P is the transition probability function; that is, if
the present state of the system is s ∈ S and an action a ∈ A(s)
is taken, resulting in state transition to state s′ with probability
P(s′|s,a), an immediate reward Sec(s′), i.e., security measure
value of the state s′, is obtained by the player taking the action.
γ is the discount factor and is normalized, i.e., 0 < γ < 1.



Using the infinite-horizon discounted cost technique,
SECPSIM gives more weight to nearer future rewards by
recursively adding up the immediate reward, i.e., security
measure value Sec : S→ [0,1] that represents how secure the
system is in each state, and the discounted expected game
value from then on. SECPSIM computes the optimal policy
π∗ that associates with any state s∈ S an optimal action π∗(s).
SECPSIM formulates the response/adversarial action selection
procedure as a game-theoretic maximin/minimax problem2.
Every policy π is assigned a value function Vπ that associates
every belief state s ∈ S with an expected global reward Vπ(s)
obtained by applying π in s. Bellman’s optimality equation
(Equation (4)) characterizes the unique optimal value function
V ∗, from which an optimal policy π∗ can be easily derived:

V ∗(s) = Sec(s)+
√

γ · max
ar∈A(s)

[∑
s′∈S

P(s′|s,a) ·Ψ(V ∗,s′)], (4)

where Ψ denotes the value function given that a specific
response action is taken:

Ψ(V ∗,s′) = Sec(s′)+
√

γ · min
aa∈A(s′s,a)

[ ∑
s′′∈S

P(s′′|s′,a) ·V ∗(s′′)]

(5)

Briefly, to calculate V ∗ numerically, SECPSIM uses the value
iteration algorithm [7] that applies dynamic programming
iterative updates to gradually improve on the value until it
converges to the ε-optimal value function [7], i.e. | Vt(b)−
Vt−1(b) |< ε. Through improvement of the value, the policy
is implicitly improved as well. Once the partially observable
decision process is formulated and the ε-optimal value func-
tion is calculated, SECPSIM determines the optimal response
strategy π∗ at any given belief state using:

π
∗(b) = arg max

ar∈A(b)
Ψ(V ∗,b,ar). (6)

Next, we discuss how SECPSIM makes use of the operator’s
responsive behavior at a subset of states during his or her
interaction with SECPSIM’s simulation GUI to calculate the
security measure values Sec(.). The ultimate goal is to make
sure that the automatically calculated optimal policy π∗ (us-
ing the calculated security measure values and the optimal
response action selection algorithm discussed above) matches
the response strategies taken by the expert operator.

Security Measure Initialization. Recall that each state
represents a set of compromised cyber and power nodes. Out
of the possible power compromises (contingencies), we focus
on generator contingencies, and other power node incidents
can be considered similarly. To initialize the security metric
values, SECPSIM makes use of a graph theoretic algorithm
to calculate an impact factor (security measure) for each state
Seci : S→ R depending on the underlying power grid topology
and the set of compromised power nodes in that state. The
states where there is no compromised power node, Seci is
initialized to 0.

The attacker is assumed to know only the topology in-
formation of the power system and hence a graph theory
based topology analysis is used to rank contingencies [8].
The power system is modeled as a graph G(V,E), where the
buses in the power system are treated as a set of vertices V
and branch components as a set of edges E. The edges are
assigned weights to represent the dissimilarity between the
branch components. The weights are based on the reactance
X , since X is usually greater than resistance R of the branch.

2We describe the response action selection procedure here, and one can
easily compute the optimal adversarial action similarly.

To determine the most critical generators for a cyber-
attack, the concept of vertex centrality is used. Vertex centrality
measures assign ranking coefficients to vertices in a graph,
from which we can deduce that the most important generators
are those located on buses with a high ranked centrality
index. Among all vertex centrality indices, evidence of a
close relationship between closeness centrality and impact
of generator outages has been shown in [8]. The closeness
centrality for a n bus system is defined as:

Cc(νi) =
∑i∈ν/i d(i, j)

n−1
(7)

The above equation relies on the use of shortest path distance
d(i, j) between the vertices which is computed using the
Dijkstra [9] shortest path algorithm. The closeness centrality
index is extended for a N − X case in [10] given by the
closeness impact centrality index as:

CIc(Vcont) = ∑
i∈Vcont

|Cc(vi)| (8)

where, Vcont is the set of generators considered for the N−
X case. The security metric value for each CMDP state is
initialized as

Seci(s) = 1− CIc(Vcont(s))
CIc(V )

(9)

where V is the total set of generators, and Vcont(s) indicates the
set of compromised power nodes, i.e., generator contingencies,
in state s. Consequently, Seci is assigned a real value in [0,1]
depending on how critical the generator contingencies in s are.
States with higher Seci values represent more system security;
therefore, the attackers and the defenders takes actions to drive
the system towards less and more secure states, respectively.

Automatic Security Metric Elicitation. Computation of a
security measure function that explains the operator’s response
policy is essentially an inverse control problem in which
Sec(.) is desired given π∗. SECPSIM employs a game-theoretic
inverse reinforcement learning algorithm to consider the oper-
ator’s policy as evidence, and consequently update the apriori
security measure values Seci(.). Similar to [6], uncertainty of
the prior security measure knowledge is modeled using the
Laplace density function:

P(Sec(s) = r) =
1

2σ
e−
|r−Seci(s)|

2σ ,∀s ∈ S, (10)

where P(Sec(s) = r) denotes the probability that the security
measure value for the state s is equal to r. As a distribution
parameter, σ denotes the predefined uncertainty level.

SECPSIM takes the operator’s noisy response policy during
an attack scenario as well as the above apriori knowledge to
derive the posterior distribution of the system security measure.
In particular, an attack scenario T is represented as a sequence
of (state, action) pairs T = [(s1,a1),(s2,a2), · · · ,(sn,an)] that
denotes the system states and the operator’s corresponding re-
sponses. Due to the Markov property of CMDP, determination
of response actions, at each time instant, depends only on the
present state. Therefore,

P(T |Sec) = P((s1,a1)|Sec) ·P((s1,a1)|Sec) · · ·P((sn,an)|Sec),
(11)

where P((si,ai)|Sec) denotes the probability that ai is selected
as the optimal policy at state si given the security measure
function Sec. It is important to highlight that the optimal
policy value is always unique; however, the above probability
distribution encodes the noise in the optimal policy samples
due to the operator’s expertise level.



Fig. 1. An Operating Snapshot of a Sample Power System in SECPSIM

Fig. 2. An Operating Snapshot of SECPSIM with Several Servers Compromised

The optimal policy π∗ maximizes the Ψ function in Equa-
tion (6). Therefore, the larger Ψ is, the more likely it is that the
operator would take action π∗(s) at state s. Additionally, this
likelihood increases as we get more confident in the operator’s
expertise level, i.e., he or she can respond appropriately [6]:

P((s,a)|Sec) =
eτ·Ψ(V,s,a)

∑a′∈A eτ·Ψ(V,s,a′)
, (12)

where τ is a non-negative constant, which represents the
operator’s expertise level. SECPSIM calculates the security
measure’s posterior distribution using the following equation:

P(Sec|T ) = P(T |Sec) ·P(Sec)
P(T )

=
1
Z

eτ·∑1≤i≤n Ψ(V,si,ai), (13)

which applies the Bayes theorem. Z denotes the normalizing
constant, and n is the length of the attack scenario T . Con-
sequently, the metric elicitation results in a refined security
measure function Sec.

IV. SIMULATION RESULTS

Behavioral Model Creation. Figure 1 shows our testbed
power system topology, and Figure 2 illustrates a simplistic
cyber network of the power grid. The operators see such a

combined cyber-physical view of the power grid. In the back-
ground, SECPSIM simulates both cyber and power networks,
and additionally, emulates a multi-step intrusion scenario using
the discussed game-theoretic formulation. In case of an attack,
SECPSIM provides the operator with a visual and textual
detailed information about the attack, and asks for the optimal
countermeasure action. During the interaction with an expert
operator, SECPSIM uses his/her countermeasure actions to
create a behavioral model that is later compared to the action
sequence selected by each inexperienced operator. Figure 3(a)
shows how the behavioral model creation converges to the
optimal policy during the expert operator-vs.-simulator inter-
action. The horizonal axis represents the number of questions,
e.g., in Figure 2, and the vertical axis represents how far the
learned model is from the ideal optimal policy. Figure 3(b)
shows how the security measure refinement process converges
during SECPSIM’s interaction with the expert operator. The
vertical axis represents the policy uncertainty after every
single question. Estimation of the posterior security measure
distribution was done using 200 samples, and each query took
7.2 seconds on average to be processed.

Evaluation Scenarios. We evaluate how consideration of both
cyber and power network topology in corrective control action
selection makes a difference and results in more meaningful
countermeasure strategies.



2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

D
is

ta
n

ce
 t

o
 t

h
e

 o
p

e
ra

to
r'

s 
p

o
lic

y
 

Queries 

(a) Behavioral Model Generation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

U
n

ce
rt

ai
n

ty
 

Queries 

(b) Behavioral Model Uncertainty

(c) Frequency response for N-1 Contingency (G8) (d) Frequency response for N-2 Contingency
Fig. 3. Evaluation Results for SECPSIM

RANK N −1 Contingencies
GEN BUS Cc

1 G3 7 0.3136
2 G1 1 0.2926
3 G2 5 0.2648
4 G8 15 0.2645
5 G7 14 0.2468
6 G5 9 0.2465
7 G4 8 0.2320
8 G6 11 0.2287

(a) PALCO: N-1 GO CR

RANK N −1 Contingencies
GEN BUS CI

1 G8 15 1
2 G4 8 0.5
3 G2 5 0.16667
4 G7 14 0.125
5 G5 9 0.1
6 G3 7 0.0555
7 G6 11 0.0476

(b) N-1 CP CR

RANK N −1 Contingencies
GEN BUS CI

1 G8, G4 15,8 1.5
2 G8, G2 15,5 0.1667
3 G8, G7 15,14 1.125
4 G8, G5 15,9 0.1
5 G8, G3 15,7 0.0555
6 G8, G6 15,11 0.0476
7 G4, G2 8,5 0.6667

(c) N-2 CP CR

1 Shed load Locher A, 271 MW
2 Shed load Amus A and Amus B, 100 MW each
3 Shed load Grange A, 172 MW
4 Shed load Ash A and Ash B, 80 MW each
5 Shed load Extrnl D, 154 MW
6 Shed load Jenkin, 21 MW

(d) CA for N-2 CR
Fig. 4. Evaluation Results for SECPSIM (CP: Cyber Physical; CR: Contingency Ranking; CA: Control Action; GO: Generator Outage)

1) Physical attack contingency ranking based on incom-
plete information: Using the graph theory based ranking
algorithm for generator contingency, they were ranked for
N− 1 contingency. The results are shown in Table I for the
PALCO system in PowerSimulator. It is to be noted here that
the algorithm can be used for finding N−X contingencies and
not limited to just N−1.

2) Cyber-physical attack vulnerability ranking: The N-1
contingency ranking based on the combined cyber-physical
ranking metric is given in Table 4(b). The top seven N-2
contingencies are ranked and shown in Table 4(c).

3) Control action for cyber-physical attack without cyber
simulator: We look at how an operator responds to a contin-
gency without a cyber-simulator associated with the operator
training module. N − 1 Contingency: From the contingency
ranking given in Table 4(b), G8 at bus 15 is chosen to be
simulated in the PowerSimulator. For this contingency, it was
seen that the system voltage, line loadings and frequency are
within acceptable limits. Figure 3(c) shows the frequency curve
after the contingency. According to North American Electric
Reliability Corporation (NERC) document [11], frequency
should be restored to at least 58.5 Hertz in ten seconds or
less and to at least 59.5 Hertz in thirty seconds or less. It was
observed that the frequency dipped to a minimum of 59.47
Hz and recovered quick enough to satisfy this criterion. N−2
Contingency: From the contingency ranking given in Table
4(c), G8 and G4 at bus number 15 and 8 are chosen for
this scenario. The generation at G8 at the time of tripping
is 400 MW, and at G4 it is 645 MW. The control actions
necessary to prevent under frequency and bring it back into
acceptable limits within reasonable time frame is given in
Table 4(d). Figure 3(d) shows the frequency response of the
system for the N−2 contingency case with control actions. The
total load at the time the contingency occurs is 3160 MW. A
total of 978 MW of load is to be shed in order to bring the
frequency of the system within acceptable bounds while the

other generators in the system start ramping up their generation
to satisfy connected load.

4) Control Action for Cyber-Physical Attack with Cyber
Simulator: The cyber-simulator helps in making the operator
aware that the attack on the system has been caused by a cyber-
attack and not probably due to a physical malfunction/dis-
turbance/attack. The operator is presented with the option of
recovering the cyber assets which have been compromised. In
this way, the operator is able to retrieve the essential cyber
assets first, and restore the physical power system assets to
normal operation thereby reducing the effective downtime of
a device. N-1 Contingency: It has been seen before that there
is no control action required from the operator for the N-
1 contingency case as the system is able to deal with such
a condition. N-2 Contingency: Control action taken by the
operator will be very different in presence of cyber simulator
as operator is aware that the contingency has occurred due to a
cyber-attack which needs to be taken care of as well. The load
shedding operations would still be needed as stated in Table
4(d) to keep the system frequency within acceptable bounds.
However, since the operator knows the cause of the attack,
the time in bringing the generators back online is reduced
greatly. G4 at bus 8 is the bigger of the two generators which
were taken out. The operator would recover the cyber assets
associated with this generator and bring it back up online first
followed by G8.

It is to be noted here that in the absence of the cyber
simulator, the operator and repair crew will not be aware
of cyber-assets being compromised. Even if operators restore
the physical system, the attacker will take out generators
easily again. In such a situation, the cost associated with the
contingency cannot be calculated but will be very high. To
compute the savings in cost when the operator is aware of
the cyber-attack, we will consider a simple scenario. It is to
be noted here that the generator startup and ramping times
are still the same, and the time saved in troubleshooting the



root cause is the savings for the utility. When the operator
notices the contingency, initial reaction is to shed the load to
bring system frequency within acceptable bounds for N − 2
contingency discussed above. Then the operator tries to bring
the generators back into service, however this would not be
possible since the cyber assets are compromised. The operator
then has to call the maintenance division to take a look at what
has happened at the problem location and troubleshoot for the
cause. The money lost per hour of troubleshooting is about
$67726 assuming a charge of $0.06925 per kWh for lost load
of 978 MW in this specific case. Assuming the clearance time
ranges between an hour to four hours, the total dollar amount
lost by the utility for not serving the load could range from
$67726 to $270906 neglecting generation costs.

V. RELATED WORK

Cone et al. propose CyberCIEGE [12], a video game as a
cyber security awareness and educational tool that can engage
typical users in an engaging security adventure. Shumba [13]
suggests new tool-based techniques to educate students about
cyber-security basics. Tobin et al. [14] introduce AWARE that
emulates intrusions on a Windows machine where the user can
learn how to detect the on-going intrusion using the system-
supplied tools. The above-mentioned proposed solutions are
mostly focused on educating general users regarding universal
security concepts and does not concentrate on training se-
curity administrators regarding advanced tactics to protect a
networked system against malicious adversaries. Labuschagne
et al. [15] propose an interactive game hosted by social
networking sites with the purpose of creating awareness on
information security threats and vulnerabilities. Saunders [16]
introduces instructional methods for information assurance
(IA) using simulation. These proposed techniques can be
used for educating a variety of IA constituency including
network administrators and functional managers. Although the
papers introduce novel ideas, they are neither implemented nor
evaluated on simulated or real-world environments.

It is noteworthy that unlike SECPSIM almost none of
the past security training or educational software tools has
the capability of learning from expert administrators and
hence require heavy manual human involvement to design
optimal corrective and responsive control actions for differ-
ent situations. Furthermore, they do not take into account
detailed information such as the network configuration of the
infrastructure to make the training effort customized for each
target infrastructure. Such customization enables SECPSIM to
train the system operators more accurately. Finally, SECPSIM
targets cyber-physical infrastructures where both cyber assets
and power components are emulated.

Some commercially available OTS include Alstoms e-
terrasimulator3, ABBs OTS4, Open Systems Internationals
OpenOTS 5 among others. Each of these simulators share the
same three common modules; Power system module, Control
center module and Instructor module with varying level of
detail. However, almost all of the above-mentioned solutions
concentrate on simulation of the power components and the
cyber network configuration details are often ignored. The need
for a cyber-physical smart grid security approach as well as
system requirements and counter measures are highlighted in
[17]. CW. Ten et. al propose different ways of modeling cyber
intrusions and using the proposed model evaluate impact on
SCADA systems in [18]. The fundamental limitations of static

3Available at http://www.alstom.com/grid/e-terrasimulator/.
4Available at http://www.abb.us.
5Available at http://www.osii.com.

and dynamic attack detection, and identification procedures is
studied in [19]. Counter measures against arbitrary unobserv-
able attacks on SCADA/EMS using known secure PMUs in
the system is studied in [20]. None of the abovementioned
solutions aims at training operators regarding the cyber threats
and possible countermeasures.

VI. CONCLUSIONS

In this paper, we presented SECPSIM, an enhanced cyber-
physical security simulator for training operators. SECPSIM
learns mathematically how to protect the cyber-physical infras-
tructure through its interaction with an operator or scripted list
of suitable control actions in various simulated cyber-physical
intrusion states. SECPSIM uses the mathematical models to
train operator(s) with a user friendly graphical interface that
represents a realistic simulated infrastructure. Our results show
that SECPSIM can train system operators efficiently with min-
imal manual effort on a simulated cyber-physical environment,
and hence without causing any damaging consequence on an
actual operational system.
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